Products Lab Consumables & Materials Thin Film Deposition Parts Electron Beam Evaporation Graphite Crucible
Electron Beam Evaporation Graphite Crucible

Thin Film Deposition Parts

Electron Beam Evaporation Graphite Crucible

Item Number : KMS02

Price varies based on specs and customizations


Material
Graphite
Specification
Ф35-65*17-30mm
cover
optional
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Applications

Electron beam evaporation graphite crucible is a technology that uses electron beams to create flexible and rough graphite films. Its key parameters include carbon source supply, electron beam irradiation energy, applied voltage, evaporation temperature, and evaporation time. The applied voltage modulates the adhesion between the graphite layer and the bottom layer of the crucible. To ensure a flat graphite layer, the flow rate and particle size of the carbon source feed should be controlled to achieve uniform deposition and evaporation.

In the field of power electronics, electron beam evaporation graphite crucible technology is widely used. It involves depositing a carbon source material using an electron beam to form a thin film of graphite. The graphite crucible manufactured by this process has low resistance, low corona and high yield strength. It is widely used in heat dissipation, withstand voltage manufacturing and testing of electronic equipment.

Detail & Parts

Electron beam evaporation graphite crucible details

Electron beam evaporation graphite crucible details 2

Electron beam evaporation graphite crucible details

Waterproof graphite crucible with lid detail 1
Waterproof graphite crucible with lid 
Waterproof graphite crucible with lid detail 2
Waterproof graphite crucible with lid
Waterproof graphite crucible with lid detail 3
Waterproof graphite crucible with lid
Waterproof graphite crucible with lid detail 4
Waterproof graphite crucible with lid

Technical specifications

Graphite Crucible Dimensions 35*17mm 35*22mm 40*20mm 42.5*19.5mm 45*22.5mm 50*25mm 65*30mm

The crucibles we show are available in different sizes and custom sizes are available on request.

Advantage

  • Preparation accuracy: Electron beam evaporation technology can precisely control the deposition process, resulting in high-precision and consistent graphite crucibles.
  • Thermal shock resistance: Graphite films formed by electron beam evaporation have excellent thermal shock resistance and are suitable for applications with rapid temperature changes.
  • Wear resistance: Electron beam evaporated graphite crucible has good wear resistance, making it durable and able to withstand harsh conditions.
  • Chemical Resistance: These crucibles are resistant to acids, alkalis and chemical contamination, ensuring their reliability and longevity in chemically aggressive environments.
  • Flexibility and roughness: The graphite film formed by this technique has a certain degree of flexibility and roughness, making it effective for various applications.

In conclusion, e-beam evaporated graphite crucibles have precise preparation, thermal shock resistance, abrasion resistance, chemical resistance, flexibility and roughness. They are widely used in power electronics, molecular binding testing, laser technology, batteries, high voltage capacitors and medical device applications.

FAQ

What Are Thermal Evaporation Sources?

Thermal evaporation sources are devices used in thermal evaporation systems to deposit thin films onto substrates. They work by heating a material (evaporant) to high temperatures, causing it to evaporate and then condense onto a substrate, forming a thin film.

Comparison Of Electron Beam Evaporation Graphite Crucible Technology And Traditional Technology.

Although the electron beam evaporation graphite crucible technology is more costly than traditional hot pressing, it has higher precision and is more suitable for the manufacture of complex graphite crucibles. Compared with conventional carbon source evaporation, electron beam evaporation achieves uniform carbon source distribution and smooth carbon surface, improving material performance and reliability. The technology offers a simpler, more energy-efficient method for device fabrication in fields such as power electronics, and significantly improves device reliability.

What Are The Main Types Of Thermal Evaporation Sources?

The main types of thermal evaporation sources include resistive evaporation sources, electron-beam evaporation sources, and flash evaporation sources. Each type uses different methods to heat the evaporant, such as resistive heating, electron beam heating, or direct contact with a hot surface.

How Do Thermal Evaporation Sources Work?

Thermal evaporation sources work by passing electrical current through a resistive material, which heats up to high temperatures. This heat is transferred to the evaporant, causing it to melt and vaporize. The vapor then travels through a vacuum chamber and condenses onto a substrate, forming a thin film.

What Are The Advantages Of Using Thermal Evaporation Sources?

The advantages of thermal evaporation sources include high deposition rates, good directionality, excellent uniformity, and compatibility with various materials. They are also relatively simple and affordable, making them suitable for a wide range of applications in thin film deposition.

What Applications Are Thermal Evaporation Sources Used For?

Thermal evaporation sources are used in various applications such as the production of optical coatings, semiconductor devices, and various types of thin films. They are particularly useful in industries that require precise control over the deposition of materials onto substrates.
View more faqs for this product

4.8

out of

5

Speedy shipping and well-packaged. The crucible is of remarkable quality.

Wendell Craine

4.7

out of

5

Excellent value for the price. Highly recommend this crucible for lab use.

Zaynah McGee

4.9

out of

5

Impeccable quality and construction. Meets all our lab requirements.

Lucian Macias

4.6

out of

5

Durable and long-lasting. Withstands high temperatures and rigorous use.

Akeem Dyer

4.8

out of

5

Cutting-edge technology. The crucible's performance is outstanding.

Ayanna Christensen

4.7

out of

5

Highly recommend. The crucible's features are impressive.

Joelle Mccall

4.9

out of

5

Meticulously crafted. The crucible is a testament to precision engineering.

Mikel Joseph

4.6

out of

5

Sturdy and resilient. Withstands demanding lab conditions effortlessly.

Abdul Hooper

4.8

out of

5

State-of-the-art technology. The crucible's capabilities are remarkable.

Aniya Durham

4.7

out of

5

Great value for money. The crucible's performance exceeds expectations.

Leonel Henderson

4.9

out of

5

Unparalleled quality. The crucible is a game-changer in our lab.

Mireille Mckinney

4.6

out of

5

Durable and reliable. The crucible withstands rigorous use remarkably.

Aric Mcmahon

4.8

out of

5

Cutting-edge technology. The crucible's capabilities are astounding.

Amina Hampton

4.7

out of

5

Excellent value for the price. The crucible's performance is impressive.

Janiya Haney

4.9

out of

5

Meticulously crafted. The crucible's precision is remarkable.

Dominique Matthews

4.6

out of

5

Sturdy and resilient. Withstands demanding lab conditions effortlessly.

Davion Mcintyre

4.8

out of

5

State-of-the-art technology. The crucible's capabilities are remarkable.

Ayanna Christensen

4.7

out of

5

Great value for money. The crucible's performance exceeds expectations.

Joelle Mccall

PDF - Electron Beam Evaporation Graphite Crucible

Download

Catalog of Thin Film Deposition Parts

Download

Catalog of Thermal Evaporation Sources

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Graphite evaporation crucible

Graphite evaporation crucible

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

Electron Gun Beam Crucible

Electron Gun Beam Crucible

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible enables precise co-deposition of various materials. Its controlled temperature and water-cooled design ensure pure and efficient thin film deposition.

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible (BN Crucible)

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible (BN Crucible)

High-purity and smooth conductive boron nitride crucible for electron beam evaporation coating, with high temperature and thermal cycling performance.

Thermally evaporated tungsten wire

Thermally evaporated tungsten wire

It has a high melting point, thermal and electrical conductivity, and corrosion resistance. It is a valuable material for high temperature, vacuum and other industries.

Electron Beam Evaporation Coating / Gold Plating / Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating / Gold Plating / Tungsten Crucible / Molybdenum Crucible

These crucibles act as containers for the gold material evaporated by the electron evaporation beam while precisely directing the electron beam for precise deposition.

Molybdenum Vacuum furnace

Molybdenum Vacuum furnace

Discover the benefits of a high-configuration molybdenum vacuum furnace with heat shield insulation. Ideal for high-purity, vacuum environments like sapphire crystal growth and heat treatment.

Ceramic Evaporation Boat Set

Ceramic Evaporation Boat Set

It can be used for vapor deposition of various metals and alloys. Most metals can be evaporated completely without loss. Evaporation baskets are reusable.1

Evaporation Crucible for Organic Matter

Evaporation Crucible for Organic Matter

An evaporation crucible for organic matter, referred to as an evaporation crucible, is a container for evaporating organic solvents in a laboratory environment.

Large Vertical Graphitization Furnace

Large Vertical Graphitization Furnace

A large vertical high-temperature graphitization furnace is a type of industrial furnace used for the graphitization of carbon materials, such as carbon fiber and carbon black. It is a high-temperature furnace that can reach temperatures of up to 3100°C.

CVD diamond for thermal management

CVD diamond for thermal management

CVD diamond for thermal management: High-quality diamond with thermal conductivity up to 2000 W/mK, ideal for heat spreaders, laser diodes, and GaN on Diamond (GOD) applications.

Vertical high temperature graphitization furnace

Vertical high temperature graphitization furnace

Vertical high temperature graphitization furnace for carbonization and graphitization of carbon materials up to 3100℃.Suitable for shaped graphitization of carbon fiber filaments and other materials sintered in a carbon environment.Applications in metallurgy, electronics, and aerospace for producing high-quality graphite products like electrodes and crucibles.

304 stainless steel strip foil 20um thick battery test

304 stainless steel strip foil 20um thick battery test

304 is a versatile stainless steel, which is widely used in the production of equipment and parts that require good overall performance (corrosion resistance and formability).

Ultra-high temperature graphitization furnace

Ultra-high temperature graphitization furnace

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials.

PTFE insulator non-standard customized

PTFE insulator non-standard customized

PTFE insulator PTFE has excellent electrical insulation properties in a wide temperature and frequency range.

Non consumable vacuum arc furnace Induction melting furnace

Non consumable vacuum arc furnace Induction melting furnace

Explore the benefits of Non-Consumable Vacuum Arc Furnace with high melting point electrodes. Small, easy to operate & eco-friendly. Ideal for laboratory research on refractory metals & carbides.

Aluminum Oxide (Al2O3) Ceramics Heat Sink - Insulation

Aluminum Oxide (Al2O3) Ceramics Heat Sink - Insulation

The hole structure of the ceramic heat sink increases the heat dissipation area in contact with the air, which greatly enhances the heat dissipation effect, and the heat dissipation effect is better than that of super copper and aluminum.

High Purity Zinc Foil

High Purity Zinc Foil

There are very few harmful impurities in the chemical composition of zinc foil, and the surface of the product is straight and smooth; it has good comprehensive properties, processability, electroplating colorability, oxidation resistance and corrosion resistance, etc.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Carbon Graphite Boat -Laboratory Tube Furnace with Cover

Carbon Graphite Boat -Laboratory Tube Furnace with Cover

Covered Carbon Graphite Boat Laboratory Tube Furnaces are specialized vessels or vessels made of graphite material designed to withstand extreme high temperatures and chemically aggressive environments.

Aluminized ceramic evaporation boat

Aluminized ceramic evaporation boat

Vessel for depositing thin films; has an aluminum-coated ceramic body for improved thermal efficiency and chemical resistance. making it suitable for various applications.

Related Articles

A Comparative Study of Evaporation and Sputtering Techniques in Thin Film Deposition

A Comparative Study of Evaporation and Sputtering Techniques in Thin Film Deposition

The two most common techniques used for thin film deposition are evaporation and sputtering.

Find out more
The Future of Electrochemical Electrodes

The Future of Electrochemical Electrodes

The latest trends and developments in electrode materials and their implications for the future of electrochemistry.

Find out more
Understanding Electrodeposition with Electrochemical Electrodes

Understanding Electrodeposition with Electrochemical Electrodes

Electrodeposition is a process of depositing a metal or a non-metallic material onto a surface by applying an electric current.

Find out more
Understanding Warm Isostatic Press: An Essential Tool in Electronics Manufacture

Understanding Warm Isostatic Press: An Essential Tool in Electronics Manufacture

Warm Isostatic Press (WIP) equipment, also known as Warm Isostatic Laminator, is a cutting-edge technology that combines isostatic pressing with a heating element. It utilizes warm water or a similar medium to apply uniform pressure to powdered products from all directions. The process involves shaping and pressing the powder material using flexible materials as a jacket mold and hydraulic pressure as a pressure medium.

Find out more
Chemical Vapor Deposition (CVD) of Graphene Challenges and Solutions

Chemical Vapor Deposition (CVD) of Graphene Challenges and Solutions

Chemical Vapor Deposition (CVD) is a widely adopted method for the production of high-quality graphene.

Find out more
Understanding Saturated Calomel Reference Electrodes: Composition, Uses, and Considerations

Understanding Saturated Calomel Reference Electrodes: Composition, Uses, and Considerations

Explore the detailed guide on saturated calomel reference electrodes, including their composition, advantages, disadvantages, and applications. Ideal for researchers and lab technicians.

Find out more
6 Ways To activated carbon regeneration

6 Ways To activated carbon regeneration

Activated Carbon Regeneration: Thermal Regeneration Method, Biological Regeneration Method, Wet Oxidation Regeneration Method, Solvent Regeneration Method, Electrochemical Regeneration Method, Catalytic Wet Oxidation Method

Find out more
Electrochemical Cells: Generating Electricity and Driving Reactions

Electrochemical Cells: Generating Electricity and Driving Reactions

Electrochemical cells, like batteries, play a vital role in energy storage by converting chemical energy to electrical energy and vice versa. Explore the workings, types, and significance of these cells.

Find out more
Electron Beam Evaporation Technology in Vacuum Coating

Electron Beam Evaporation Technology in Vacuum Coating

An in-depth look at electron beam evaporation, its types, advantages, and disadvantages in vacuum coating processes.

Find out more
The Role of Plasma in PECVD Coatings

The Role of Plasma in PECVD Coatings

PECVD (Plasma Enhanced Chemical Vapor Deposition) is a type of thin film deposition process that is widely used for creating coatings on various substrates. In this process, a plasma is used to deposit thin films of various materials onto a substrate.

Find out more
The Importance of Activated Carbon Regeneration in Water Treatment

The Importance of Activated Carbon Regeneration in Water Treatment

In water treatment, activated carbon is often used as a means of removing unwanted contaminants, such as chlorine, chloramines, and organic matter, from drinking water and wastewater.

Find out more
Electron Beam Evaporation Coating Technology and Material Selection

Electron Beam Evaporation Coating Technology and Material Selection

An in-depth look at the principles and applications of electron beam evaporation coating technology, including material selection and various fields of application.

Find out more