Knowledge How is Graphene Made from CVD? (5 Key Steps Explained)
Author avatar

Tech Team · Kintek Solution

Updated 4 weeks ago

How is Graphene Made from CVD? (5 Key Steps Explained)

Graphene, a single-atom thick film of carbon, is produced using a method called Chemical Vapor Deposition (CVD).

This process involves decomposing hydrocarbon gases at high temperatures on a metal substrate.

It allows for precise control over the thickness and quality of graphene.

How is Graphene Made from CVD? (5 Key Steps Explained)

How is Graphene Made from CVD? (5 Key Steps Explained)

1. Preparation of the Metal Substrate

The metal substrate, often made of copper, platinum, or iridium, is placed in a high-temperature furnace.

2. Introduction of Hydrocarbon Gas

A hydrocarbon gas, such as methane or ethylene, is introduced into the reaction chamber.

It decomposes into individual carbon atoms at temperatures around 1000°C.

3. Formation of Graphene

The carbon atoms bind to the surface of the metal, nucleating and growing into a continuous film of graphene.

The metal substrate acts as a catalyst, lowering the energy barrier for the reaction and facilitating the formation of graphene.

4. Control Parameters

The thickness and quality of the graphene can be controlled by adjusting parameters such as gas flow rate, temperature, and the duration of exposure to the gas.

5. Transfer of Graphene

Once formed, the graphene can be separated from the metal substrate and transferred to other substrates for various applications.

Continue exploring, consult our experts

Discover the future of material science with KINTEK SOLUTION's cutting-edge CVD graphene production systems.

Our precision-engineered solutions provide the tools you need to meticulously control the synthesis of high-quality graphene.

From selecting the perfect metal substrate to mastering gas flow and temperature settings, unlock the potential of this extraordinary material and elevate your research with KINTEK SOLUTION's innovative technology.

Contact us today to learn more about how our products can advance your scientific endeavors!

Related Products

CVD Diamond coating

CVD Diamond coating

CVD Diamond Coating: Superior Thermal Conductivity, Crystal Quality, and Adhesion for Cutting Tools, Friction, and Acoustic Applications

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

CVD boron doped diamond

CVD boron doped diamond

CVD boron-doped diamond: A versatile material enabling tailored electrical conductivity, optical transparency, and exceptional thermal properties for applications in electronics, optics, sensing, and quantum technologies.

Drawing die nano-diamond coating HFCVD Equipment

Drawing die nano-diamond coating HFCVD Equipment

The nano-diamond composite coating drawing die uses cemented carbide (WC-Co) as the substrate, and uses the chemical vapor phase method ( CVD method for short ) to coat the conventional diamond and nano-diamond composite coating on the surface of the inner hole of the mold.

CVD diamond for thermal management

CVD diamond for thermal management

CVD diamond for thermal management: High-quality diamond with thermal conductivity up to 2000 W/mK, ideal for heat spreaders, laser diodes, and GaN on Diamond (GOD) applications.

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

Graphite evaporation crucible

Graphite evaporation crucible

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Get high-quality diamond films with our Bell-jar Resonator MPCVD machine designed for lab and diamond growth. Discover how Microwave Plasma Chemical Vapor Deposition works for growing diamonds using carbon gas and plasma.

CVD Diamond wire drawing die blanks

CVD Diamond wire drawing die blanks

CVD diamond wire drawing die blanks: superior hardness, abrasion resistance, and applicability in wire drawing various materials. Ideal for abrasive wear machining applications like graphite processing.

Cutting Tool Blanks

Cutting Tool Blanks

CVD Diamond Cutting Tools: Superior Wear Resistance, Low Friction, High Thermal Conductivity for Non-Ferrous Materials, Ceramics, Composites Machining

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Learn about Cylindrical Resonator MPCVD Machine, the microwave plasma chemical vapor deposition method used for growing diamond gemstones and films in the jewelry and semi-conductor industries. Discover its cost-effective advantages over traditional HPHT methods.

Electron Beam Evaporation Graphite Crucible

Electron Beam Evaporation Graphite Crucible

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.

915MHz MPCVD Diamond Machine

915MHz MPCVD Diamond Machine

915MHz MPCVD Diamond Machine and its multi-crystal effective growth, the maximum area can reach 8 inches, the maximum effective growth area of single crystal can reach 5 inches. This equipment is mainly used for the production of large-size polycrystalline diamond films, the growth of long single crystal diamonds, the low-temperature growth of high-quality graphene, and other materials that require energy provided by microwave plasma for growth.

CVD diamond domes

CVD diamond domes

Discover CVD diamond domes, the ultimate solution for high-performance loudspeakers. Made with DC Arc Plasma Jet technology, these domes deliver exceptional sound quality, durability, and power handling.


Leave Your Message