Knowledge What are the steps in additive manufacturing process? 5 Key Steps Explained
Author avatar

Tech Team · Kintek Solution

Updated 1 month ago

What are the steps in additive manufacturing process? 5 Key Steps Explained

Additive manufacturing, commonly known as 3D printing, is a process that builds objects by adding material layer by layer. This method contrasts with traditional subtractive manufacturing, where material is removed to shape an object. The additive manufacturing process typically consists of four main steps, with additional considerations for metal manufacturing.

5 Key Steps Explained

What are the steps in additive manufacturing process? 5 Key Steps Explained

1. CAD Design

Using Computer-Aided Design (CAD) software, a digital model of the desired object is created. This step involves designing and refining the shape, size, and specifications of the object.

2. Pre-Processing

In the pre-processing stage, the digital model is prepared for printing. This includes tasks such as optimizing the model for printing, slicing it into thin layers, and generating the necessary instructions for the 3D printer.

3. Printing

During the printing stage, the 3D printer deposits material layer by layer to build up the object. The material used can be plastic, metal, ceramics, or other types depending on the specific printer and application. Different printing technologies may be employed, such as powder bed fusion or direct energy deposition, to fuse the material together and create the desired shape.

4. Post-Processing

After the object is printed, post-processing steps may be required to enhance its final properties and appearance. This can involve removing support structures, cleaning, smoothing the surface, curing or solidifying the material, and performing any necessary finishing touches.

5. Additional Considerations for Metal Additive Manufacturing

In the context of metal additive manufacturing, there are additional considerations and steps involved. Metal objects are typically produced using powder bed fusion, where a laser or electron beam fuses metal powder particles point-by-point to build up the layers. After the printing process, the metal parts may need to undergo a debinding step. This involves removing any binder material used to hold the structure together during printing. The debound parts are then subjected to a heat treatment process under a modified, oxygen-free atmosphere to prevent oxidation. This heat treatment can be conducted in an inert or reducing atmosphere to protect the metal from oxidation. The final step may involve additional processing or treatments to achieve desired properties or precision.

Continue exploring, consult our experts

Looking for high-quality laboratory equipment for your additive manufacturing process? Look no further than KINTEK! We offer a wide range of cutting-edge equipment to support every step of the additive manufacturing process, from designing and pre-processing to printing and post-processing. Our products are designed to optimize efficiency and ensure exceptional results. Take your additive manufacturing to the next level with KINTEK. Contact us now!

Related Products

automatic heated lab pellet press 25T / 30T / 50T

automatic heated lab pellet press 25T / 30T / 50T

Efficiently prepare your samples with our Automatic Heated Lab Press. With a pressure range up to 50T and precise control, it's perfect for various industries.

Assemble Square Lab Press Mold

Assemble Square Lab Press Mold

Achieve perfect sample preparation with Assemble Square Lab Press Mold. Quick disassembly eliminates sample deformation. Perfect for battery, cement, ceramics, and more. Customizable sizes available.

Automatic Lab Pellet Press Machine 20T / 30T / 40T / 60T / 100T

Automatic Lab Pellet Press Machine 20T / 30T / 40T / 60T / 100T

Experience efficient sample preparation with our Automatic Lab Press Machine. Ideal for material research, pharmacy, ceramics, and more. Features a compact size and hydraulic press functionality with heating plates. Available in various sizes.

Hydraulic Heated Lab Pellet Press 24T / 30T / 60T

Hydraulic Heated Lab Pellet Press 24T / 30T / 60T

Looking for a reliable Hydraulic Heated Lab Press? Our 24T / 40T model is perfect for material research labs, pharmacy, ceramics, and more. With a small footprint and the ability to work inside a vacuum glove box, it's the efficient and versatile solution for your sample preparation needs.

Integrated manual heated lab pellet press 120mm / 180mm / 200mm / 300mm

Integrated manual heated lab pellet press 120mm / 180mm / 200mm / 300mm

Efficiently process heat-pressing samples with our Integrated Manual Heated Lab Press. With a heating range up to 500°C, it's perfect for various industries.

Split automatic heated lab pellet press 30T / 40T

Split automatic heated lab pellet press 30T / 40T

Discover our split automatic heated lab press 30T/40T for precise sample preparation in material research, pharmacy, ceramics, and electronics industries. With a small footprint and heating up to 300°C, it's perfect for processing under vacuum environment.

Assemble Lab Cylindrical Press Mold

Assemble Lab Cylindrical Press Mold

Get reliable and precise molding with Assemble Lab Cylindrical Press Mold. Perfect for ultra-fine powder or delicate samples, widely used in material research and development.

Manual Cold Isostatic Pellet Press (CIP) 12T / 20T / 40T / 60T

Manual Cold Isostatic Pellet Press (CIP) 12T / 20T / 40T / 60T

Lab Manual Isostatic Press is a high-efficient equipment for sample preparation widely used in material research, pharmacy, ceramics, and electronic industries. It allows for precision control of the pressing process and can work in a vacuum environment.

Electric Lab Cold Isostatic Press (CIP) 12T / 20T / 40T / 60T

Electric Lab Cold Isostatic Press (CIP) 12T / 20T / 40T / 60T

Produce dense, uniform parts with improved mechanical properties with our Electric Lab Cold Isostatic Press. Widely used in material research, pharmacy, and electronic industries. Efficient, compact, and vacuum-compatible.

Cylindrical press mold

Cylindrical press mold

Efficiently form and test most samples with Cylindrical Press Molds in a range of sizes. Made of Japanese high-speed steel, with long service life and customizable sizes.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

Drawing die nano-diamond coating HFCVD Equipment

Drawing die nano-diamond coating HFCVD Equipment

The nano-diamond composite coating drawing die uses cemented carbide (WC-Co) as the substrate, and uses the chemical vapor phase method ( CVD method for short ) to coat the conventional diamond and nano-diamond composite coating on the surface of the inner hole of the mold.

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Learn about Cylindrical Resonator MPCVD Machine, the microwave plasma chemical vapor deposition method used for growing diamond gemstones and films in the jewelry and semi-conductor industries. Discover its cost-effective advantages over traditional HPHT methods.


Leave Your Message