Knowledge What is the History of Magnetron Sputtering? (4 Key Milestones)
Author avatar

Tech Team · Kintek Solution

Updated 3 months ago

What is the History of Magnetron Sputtering? (4 Key Milestones)

The history of magnetron sputtering is a fascinating journey that spans over a century. It all began in the mid-19th century with the initial observations of sputtering phenomena. However, it wasn't until the mid-20th century that sputtering became commercially relevant.

4 Key Milestones in the History of Magnetron Sputtering

What is the History of Magnetron Sputtering? (4 Key Milestones)

1. Early Developments (1850s-1940s)

Sputtering was first observed in the 1850s. It was used for the deposition of refractory metals that couldn't be deposited by thermal evaporation. The process involved using an electrical discharge to deposit metal films on a cold cathode. This early form of sputtering was limited and not widely adopted due to its low efficiency and high costs.

2. Commercial Relevance and Diode Sputtering (1940s-1960s)

The 1940s saw the introduction of diode sputtering. This began to find commercial applications as a coating process. Despite its initial adoption, diode sputtering still faced challenges due to its low deposition rates and high costs, limiting its widespread use.

3. Introduction of Magnetron Sputtering (1970s)

The real breakthrough in sputtering technology came in the mid-1970s with the development of magnetron sputtering. This technique involved the use of a closed magnetic field over the target surface. It enhanced the efficiency of plasma generation by increasing the probability of collisions between electrons and argon atoms near the target surface. This innovation significantly increased the deposition rates and reduced the costs, making magnetron sputtering a preferred method for various applications in industries such as microelectronics and architectural glass.

4. Modern Applications and Advancements

Today, magnetron sputtering is widely used for depositing a variety of materials, including metals, ceramics, and alloys, onto different substrates. The technology has evolved to include various geometric configurations of targets and advanced methods like sweeping the magnetic field over the target surface to optimize specific applications. This evolution has solidified magnetron sputtering's role in modern industrial processes, particularly in the production of thin films and coatings.

Continue Exploring, Consult Our Experts

Discover the pinnacle of sputtering technology at KINTEK SOLUTION! With a legacy of pushing the boundaries of efficiency and application since the 1970s, our magnetron sputtering systems are the go-to choice for microelectronics, architectural glass, and more. Embrace the future of thin film and coating production by partnering with a brand that continues to innovate and refine this time-honored technique. Elevate your research and production capabilities today — with KINTEK SOLUTION, your success is just a sputter away!

Related Products

Spark plasma sintering furnace SPS furnace

Spark plasma sintering furnace SPS furnace

Discover the benefits of Spark Plasma Sintering Furnaces for rapid, low-temperature material preparation. Uniform heating, low cost & eco-friendly.

Vacuum Induction Melting Spinning System Arc Melting Furnace

Vacuum Induction Melting Spinning System Arc Melting Furnace

Develop metastable materials with ease using our Vacuum Melt Spinning System. Ideal for research and experimental work with amorphous and microcrystalline materials. Order now for effective results.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Learn about Cylindrical Resonator MPCVD Machine, the microwave plasma chemical vapor deposition method used for growing diamond gemstones and films in the jewelry and semi-conductor industries. Discover its cost-effective advantages over traditional HPHT methods.

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Get high-quality diamond films with our Bell-jar Resonator MPCVD machine designed for lab and diamond growth. Discover how Microwave Plasma Chemical Vapor Deposition works for growing diamonds using carbon gas and plasma.

Vacuum molybdenum wire sintering furnace

Vacuum molybdenum wire sintering furnace

A vacuum molybdenum wire sintering furnace is a vertical or bedroom structure, which is suitable for withdrawal, brazing, sintering and degassing of metal materials under high vacuum and high temperature conditions. It is also suitable for dehydroxylation treatment of quartz materials.

Small vacuum tungsten wire sintering furnace

Small vacuum tungsten wire sintering furnace

The small vacuum tungsten wire sintering furnace is a compact experimental vacuum furnace specially designed for universities and scientific research institutes. The furnace features a CNC welded shell and vacuum piping to ensure leak-free operation. Quick-connect electrical connections facilitate relocation and debugging, and the standard electrical control cabinet is safe and convenient to operate.

Vacuum induction melting furnace Arc Melting Furnace

Vacuum induction melting furnace Arc Melting Furnace

Get precise alloy composition with our Vacuum Induction Melting Furnace. Ideal for aerospace, nuclear energy, and electronic industries. Order now for effective smelting and casting of metals and alloys.

Vacuum levitation Induction melting furnace

Vacuum levitation Induction melting furnace

Experience precise melting with our Vacuum Levitation Melting Furnace. Ideal for high melting point metals or alloys, with advanced technology for effective smelting. Order now for high-quality results.

High Purity Magnesium (Mn) Sputtering Target / Powder / Wire / Block / Granule

High Purity Magnesium (Mn) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Magnesium (Mn) materials for your lab needs? Our custom sizes, shapes, and purities have got you covered. Explore our diverse selection today!

Electron Gun Beam Crucible

Electron Gun Beam Crucible

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Introducing our inclined rotary PECVD furnace for precise thin film deposition. Enjoy automatic matching source, PID programmable temperature control, and high accuracy MFC mass flowmeter control. Built-in safety features for peace of mind.

Electron Beam Evaporation Graphite Crucible

Electron Beam Evaporation Graphite Crucible

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.


Leave Your Message