Knowledge How are Fusion Beads Prepared? 5 Key Steps Explained
Author avatar

Tech Team · Kintek Solution

Updated 3 months ago

How are Fusion Beads Prepared? 5 Key Steps Explained

Fusion beads are a crucial part of many analytical processes. They are prepared through a series of meticulous steps that ensure the sample is homogenized and ready for accurate analysis.

How are Fusion Beads Prepared? 5 Key Steps Explained

How are Fusion Beads Prepared? 5 Key Steps Explained

1. Sample Preparation

The sample must be finely powdered, typically less than 75 micrometers in size. This ensures a more uniform mixing with the flux.

2. Mixing with Flux

The powdered sample is mixed with a flux, usually a lithium tetraborate or a mixture of tetraborate and metaborate. The flux-to-sample ratio ranges from 5:1 to 10:1. This ratio is critical as it determines the homogeneity of the final bead and the efficiency of the fusion process.

3. Heating

The mixture is heated to temperatures between 900°C and 1000°C in a platinum crucible. This high temperature is necessary to dissolve the sample completely in the flux, creating a homogeneous liquid mixture.

4. Casting

The molten mixture is then poured into a mold with a flat bottom. The mold is typically made of platinum to withstand the high temperatures and corrosive nature of the molten mixture.

5. Cooling and Solidification

After casting, the mixture cools and solidifies into a glass disc or fused bead. This bead is a homogeneous representation of the sample, free from any mineral structures.

The benefits of this method include the reduction of mineralogical or matrix effects, leading to more accurate analyses. Additionally, it allows for the combination of several different matrix types into the same calibration curve.

However, the method also has downsides, such as relatively high sample dilution, which can affect the analysis of trace elements, and higher costs associated with the equipment and materials needed.

The typical thickness of fused beads, around 3mm, can lead to issues with infinite thickness for heavier elements. The initial costs for equipment and platinumware are higher, but the cost per sample to prepare is similar to that of pressed pellets.

In summary, fusion beads are prepared through a meticulous process of mixing, heating, and casting, which results in a homogeneous sample suitable for accurate analysis, albeit with some trade-offs in terms of cost and complexity.

Continue exploring, consult our experts

Discover the precision behind accurate analysis with KINTEK SOLUTION's fusion bead technology. Our expertly crafted process, from sample preparation to cooling, ensures a homogeneous and precise bead that delivers superior analytical performance. Embrace the trade-offs for the ultimate accuracy in your research. Experience KINTEK SOLUTION's fusion beads today and elevate your laboratory's capabilities. Contact us now to explore our innovative solutions for analytical success!

Related Products

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.

Metal Alloy Grinding Jar With Balls

Metal Alloy Grinding Jar With Balls

Grind and mill with ease using metal alloy grinding jars with balls. Choose from 304/316L stainless steel or tungsten carbide and optional liner materials. Compatible with various mills and features optional functions.

High Purity Platinum (Pt) Sputtering Target / Powder / Wire / Block / Granule

High Purity Platinum (Pt) Sputtering Target / Powder / Wire / Block / Granule

High purity Platinum (Pt) sputtering targets, powders, wires, blocks, and granules at affordable prices. Tailored to your specific needs with diverse sizes and shapes available for various applications.

Electron Gun Beam Crucible

Electron Gun Beam Crucible

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

Hybrid Tissue Grinder

Hybrid Tissue Grinder

KT-MT20 is a versatile laboratory device used for rapid grinding or mixing of small samples, whether dry, wet, or frozen. It comes with two 50ml ball mill jars and various cell wall breaking adapters for biological applications such as DNA/RNA and protein extraction.

Hybrid High Energy Vibratory Ball Mill

Hybrid High Energy Vibratory Ball Mill

KT-BM400 is used for rapid grinding or mixing of dry, wet and frozen small amount of samples in the laboratory. It can be configured with two 50ml ball mill jars

Vibration Mill

Vibration Mill

Vibration Mill for Efficient Sample Preparation, Suitable for Crushing and Grinding a Variety of Materials with Analytical Precision. Supports Dry / Wet / Cryogenic Grinding and Vacuum/Inert Gas Protection.

Alumina/zirconia Grinding Jar With Balls

Alumina/zirconia Grinding Jar With Balls

Grind to perfection with alumina/zirconia grinding jars and balls. Available in volume sizes from 50ml to 2500ml, compatible with various mills.

Vacuum levitation Induction melting furnace

Vacuum levitation Induction melting furnace

Experience precise melting with our Vacuum Levitation Melting Furnace. Ideal for high melting point metals or alloys, with advanced technology for effective smelting. Order now for high-quality results.

Vacuum Induction Melting Spinning System Arc Melting Furnace

Vacuum Induction Melting Spinning System Arc Melting Furnace

Develop metastable materials with ease using our Vacuum Melt Spinning System. Ideal for research and experimental work with amorphous and microcrystalline materials. Order now for effective results.

XRF Boric Acid lab Powder Pellet Pressing Mold

XRF Boric Acid lab Powder Pellet Pressing Mold

Get accurate results with our XRF Boric Acid lab Powder Pellet Pressing Mold. Perfect for preparing samples for X-ray fluorescence spectrometry. Custom sizes available.

XRF & KBR steel ring lab Powder Pellet Pressing Mold

XRF & KBR steel ring lab Powder Pellet Pressing Mold

Produce perfect XRF samples with our steel ring lab powder pellet pressing mold. Fast tableting speed and customizable sizes for accurate molding every time.

Automatic Lab XRF & KBR Pellet Press 30T / 40T / 60T

Automatic Lab XRF & KBR Pellet Press 30T / 40T / 60T

Fast and easy xrf sample pellet preparation with KinTek Automatic Lab Pellet Press. Versatile and accurate results for X-ray fluorescence analysis.

Electrode polishing material

Electrode polishing material

Looking for a way to polish your electrodes for electrochemical experiments? Our polishing materials are here to help! Follow our easy instructions for best results.

Electron Beam Evaporation Coating / Gold Plating / Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating / Gold Plating / Tungsten Crucible / Molybdenum Crucible

These crucibles act as containers for the gold material evaporated by the electron evaporation beam while precisely directing the electron beam for precise deposition.

Electron Beam Evaporation Graphite Crucible

Electron Beam Evaporation Graphite Crucible

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.


Leave Your Message