Products Lab Consumables & Materials Electrochemical Consumables H Type Electrolytic Cell Triple Electrochemical Cell
H Type Electrolytic Cell Triple Electrochemical Cell

Electrochemical Consumables

H Type Electrolytic Cell Triple Electrochemical Cell

Item Number : ELCH

Price varies based on specs and customizations


$69.90 - $599.90 / set


Specification
30ml~ 500ml
Applicable temperature range
0 ~ 60℃
Material
Boron glass + PTFE
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

An electrolytic cell is an electrochemical cell that uses electrical energy to drive a non-spontaneous redox reaction. It consists of an electrolyte and two electrodes (a cathode and an anode). When an external voltage is supplied to the electrodes, the ions in the electrolyte are attracted to an electrode with the opposite charge, allowing charge-transferring (also known as faradaic or redox) events to occur. The negative electrode is called the cathode and the positive electrode is called the anode. Oxidation occurs at the anode, and reduction occurs at the cathode.

The electrochemical H-type electrolytic cell can be configured with membrane or non-membrane sealing in two, three, or hybrid configurations, with three electrodes in the H-type electrolytic cell.

Technical specifications

Double H type electrolytic cell

Specification 30ml~ 500ml
Applicable temperature range 0 ~ 60℃
Applicable membrane area 15mm (can be customized)
Material Boron glass + PTFE
Electrolytic cell punching Three electrode holes (6mm) Four gas (3mm) can be customized opening

Triple H type electrolytic cell

Specification 30ml~ 500ml
Applicable temperature range 0 ~ 60℃
Applicable membrane area 0.5cm2/1cm2
Material Boron glass + PTFE
Electrolytic cell punching Three electrode holes (6mm) Six air holes (3mm) can be customized

Detail & Parts

KINTEK provides a full range of specifications and models of electrolytic cells.

H-shaped sealed electrolytic cell structure

H-shaped sealed electrolytic cell structure
1. H-type sealed electrolytic cell; 2. Flange clamp surface; 3. 15mm flange; 4. Flange clamp; 5. 3.1mm air hole*4; 6. 6.1mm electrode hole*3; Sealing cover; 8. Sealing nut; 9. Sealing rubber ring

H-shaped unsealed electrolytic cell structure

H-shaped unsealed electrolytic cell structure
1. H-type non-sealed electrolytic cell; 2. Single-layer five-port water bath electrolytic cell; 3. 15mm flange opening; 4. Flange clamp; 5. 6.1mm electrode; 6. Electrode fixing ring

PTFE type details

PTFE type details
1. Fixing rod; 2. Fixing plate; 3. PTFE cover; 4. Sealing nut, 3.1mm air hole*4, 6.1mm electrode hole*3; 5. H-type replaceable membrane channel; 6. Membrane silicone gasket

 

H type electrolytic cell - H type / triple detail 1H type electrolytic cell - H type / triple detail 2H type electrolytic cell - H type / triple detail 3H type electrolytic cell - H type / triple detail 4H type electrolytic cell - H type / triple detail 5H type electrolytic cell - H type / triple detail 6

H type electrolytic cell - H type / triple 2

 H type / triple details 3

H type electrolytic cell detail 4

H type electrolytic cell detail 5 H type electrolytic cell detail 6 H type electrolytic cell detail 7H type electrolytic cell detail 8

Operating steps

H type sealed electrolytic cell

The electrolytic cell, which is sealed, is comprised of a sealing rubber ring, a sealing plug, a polytetrafluoroethylene cover, and a cell body.

1. The electrolytic cell, which is sealed, is comprised of a sealing rubber ring, a sealing plug, a polytetrafluoroethylene cover, and a cell body.

To install, insert the electrode and gas pipe into the electrolytic cell, and then install the sealing ring.

2. To install, insert the electrode and gas pipe into the electrolytic cell, and then install the sealing ring.

Next, install the sealing nut onto the electrode and attach the air hole, then squeeze the sealing ring and tighten the nut.

3. Next, install the sealing nut onto the electrode and attach the air hole, then squeeze the sealing ring and tighten the nut.

After that, place the cell seal onto the cell body.

4. After that, place the cell seal onto the cell body.

Finally, secure the cover in place.

5. Finally, secure the cover in place.

The installation process is complete (the triple version is commonly used).

6. The installation process is complete (the triple version is commonly used).

H type unsealed electrolytic cell

Install the sealing nut onto the electrode and attach the air hole, then squeeze the sealing ring and tightly rotate the nut.

1. Install the sealing nut onto the electrode and attach the air hole, then squeeze the sealing ring and tightly rotate the nut.

Place the cell seal onto the cell body.

2. Place the cell seal onto the cell body.

Securely fasten the cover.

3. Securely fasten the cover.

The installation process is now complete (the triple version follows the same steps).

4. The installation process is now complete (the triple version follows the same steps).

Application

Petrochemical chemistry experiment institutions of higher learning Biological Technology
Petrochemical, Chemistry experiment, Institutions of higher learning, Biological Technology

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

The Difference Between H-type Sealed Electrolytic Cells And Unsealed Electrolytic Cells——Use Difference

1.Sealed electrolytic cell: It can be used for sealing tests, nitrogen, deoxygenation, inflating, gas extraction (gas collection), etc. in the cell. The trachea can also be used as a liquid pumping or liquid adding pipe.2.Unsealed electrolytic cell: only for ordinary test experiments, there is no sealed electrolytic cell with the functions described above.

The Difference Between H-type Sealed Electrolytic Cells And Unsealed Electrolytic Cells——Appearance Difference

1.The body and lid of the sealed electrolytic cell are threaded and equipped with large sealing rings.2.Micro-volume and small ml sealed model, using frosted mouth and sealing ring method for sealing.3.The electrode holes and air holes on the sealed cover are threaded holes and equipped with corresponding seals.4.The body and cover of the unsealed electrolytic cell are both flat and unthreaded, and the electrode holes are also through-holes and unthreaded.

What Is The H Type Of Electrochemical Cell?

The H-type electrochemical cell is a replaceable membrane sealed cell that consists of two electrochemical cells coupled together. It features a gas inlet and outlet for easy degassing and multiple electrode feedthroughs for working, counter, and reference electrodes.

What Is The Function Of Auxiliary Electrode?

The auxiliary electrode, also known as the counter electrode, is an electrode used in a three-electrode electrochemical cell for voltammetric analysis or other reactions where an electric current is expected to flow. Its primary function is to provide a pathway for current flow in the electrochemical cell without passing a significant current through the reference electrode. It provides a means of applying input potential to the working electrode. The auxiliary electrode may be isolated from the working electrode to prevent any byproducts generated from contaminating the main test solution. It is often fabricated from electrochemically inert materials such as gold, platinum, or carbon.

What Is H-cell Used For?

The H-Cell is a two-compartment electrochemical cell used for membrane testing, H2 permeation, or any other experiment where two separate electrode chambers are required. Both compartments can be separated by an ion-exchange membrane.

What Is The Difference Between Auxiliary And Reference Electrode?

The main difference between auxiliary and reference electrode lies in their function in an electrochemical cell. The auxiliary electrode, also known as the counter electrode, is used to facilitate charge transfer to and from the analyte and pass all the current so that the current at the working electrode can be controlled. On the other hand, the reference electrode is used to reference when measuring and controlling the potential of the working electrode and does not pass any current. The reference electrode has a fixed potential, while the potential of the auxiliary electrode can change.

What Is The H Type Microbial Fuel Cell?

The Microbial H-Cell is a Microbial Fuel Cell (MFC) reactor chamber. The H-cell is defined according to the shape of the cell. It can be used as reactor and other electrochemical cells. The assembled H-cell has a volume of 100ml on each side of chamber.

What Materials Are Commonly Used For Auxiliary Electrodes?

The choice of materials for auxiliary electrodes depends on the specific electrochemical system and the desired reaction. Common materials for auxiliary electrodes include platinum, graphite, stainless steel, and certain metal alloys. These materials are typically inert and do not participate in the desired electrochemical reaction, ensuring that the auxiliary electrode's role remains solely as a conductor for current flow.

How Many Types Of Electrolytic Cells Are There?

There are two main types of electrolysis cells: The first type is called a "membrane cell" or "diaphragm cell". In this type of cell, a porous membrane or diaphragm is placed between the anode and cathode to prevent the reactions at each electrode from mixing.

How Do Auxiliary Electrodes Affect The Performance Of An Electrochemical Cell?

Auxiliary electrodes play a crucial role in the performance of electrochemical cells. They help maintain a balanced electrical potential, minimizing side reactions or unwanted reactions at the working electrode. The choice of appropriate materials for the auxiliary electrode is essential to prevent contamination or interference with the desired electrochemical process. Additionally, the design and positioning of the auxiliary electrode within the cell can impact overall efficiency and uniformity of current distribution. Proper selection and placement of auxiliary electrodes can enhance the performance, accuracy, and reproducibility of electrochemical measurements or processes.

What Is The H Cell For Hydrogen Permeation Experiments?

The Devanathan-Stachurski cell (or «H cell») is successfully used to evaluate the permeation of hydrogen through sheets or membranes. An H cell consists of two electrochemical compartments separated by a sheet which acts as a working electrode (WE) in both cells.

Why Are Auxiliary Electrodes Necessary In Electrochemical Systems?

Auxiliary electrodes are necessary in electrochemical systems to maintain electrical neutrality and ensure the flow of current. In many electrochemical reactions, the desired reaction occurs at the working electrode, while the auxiliary electrode acts as a counterbalance. It helps to complete the circuit by providing a path for the flow of electrons or ions, thereby allowing the continuous movement of charge and ensuring the overall electrochemical reaction proceeds smoothly and efficiently.

Are There Any Limitations Or Considerations When Using Auxiliary Electrodes?

When using auxiliary electrodes, several limitations and considerations should be taken into account. The choice of materials for the auxiliary electrode is critical to prevent any unwanted reactions or contamination that could affect the desired electrochemical process. Compatibility between the auxiliary electrode and the electrolyte or reactants should be considered to ensure stability and long-term performance. Additionally, the design and positioning of the auxiliary electrode should be carefully optimized to minimize current distribution issues or potential interference with the working electrode. It is also essential to regularly monitor and maintain the auxiliary electrode to prevent degradation or contamination that could impact its performance. Finally, the size and shape of the auxiliary electrode should be considered to ensure compatibility with the specific electrochemical cell or system being used.
View more faqs for this product

4.7

out of

5

The H-type electrolytic cell arrived promptly and in excellent condition. Its quality is impressive, and it has become an invaluable tool in our lab.

Klara Pasternak

4.8

out of

5

This electrolytic cell has exceeded our expectations. It's durable and user-friendly, making it a great choice for our research.

Janek Kubiak

4.9

out of

5

The H-type electrolytic cell has revolutionized our lab work. Its advanced technology has enabled us to conduct experiments with greater precision and efficiency.

Levente Javor

4.6

out of

5

The H-type electrolytic cell from KINTEK SOLUTION is an exceptional piece of equipment. Its construction is solid, and it provides accurate and reliable results.

Zuzana Novak

4.7

out of

5

We're thrilled with the H-type electrolytic cell. It has become an indispensable tool in our lab, and its versatility makes it suitable for a wide range of experiments.

Viktor Horvath

4.8

out of

5

The H-type electrolytic cell has significantly enhanced our research capabilities. Its user-friendly design and precise measurements have made it a favorite among our team.

Nataša Petrović

4.9

out of

5

The H-type electrolytic cell is a testament to KINTEK SOLUTION's commitment to quality. Its durability and accuracy have made it an essential part of our laboratory.

István Szabó

4.6

out of

5

We're highly satisfied with the H-type electrolytic cell. Its ease of use and consistent performance have made it a valuable addition to our lab.

Aneta Michalik

4.7

out of

5

The H-type electrolytic cell has exceeded our expectations. Its innovative design and reliability have made it a game-changer in our research.

Zoran Jovanović

4.8

out of

5

We're impressed with the H-type electrolytic cell's durability and accuracy. It has become an indispensable tool in our lab.

Katarzyna Wójcik

4.9

out of

5

The H-type electrolytic cell is a marvel of engineering. Its precision and versatility have revolutionized our experimental procedures.

Róbert Farkas

4.6

out of

5

We're delighted with the H-type electrolytic cell. Its ease of use and consistent performance have made it a favorite among our researchers.

Jelena Marković

4.7

out of

5

The H-type electrolytic cell has become an indispensable tool in our lab. Its user-friendly design and reliable results have made it a must-have for our experiments.

Péter Kovács

4.8

out of

5

We're extremely satisfied with the H-type electrolytic cell. Its durability and accuracy have made it an invaluable asset to our laboratory.

Anna Kowalska

4.9

out of

5

The H-type electrolytic cell is a testament to KINTEK SOLUTION's commitment to excellence. Its innovative design and precise measurements have made it a game-changer in our research.

József Nagy

4.6

out of

5

We're highly impressed with the H-type electrolytic cell's performance. Its ease of use and consistent results have made it a valuable addition to our lab.

Renáta Kiss

4.7

out of

5

The H-type electrolytic cell has exceeded our expectations. Its durability and accuracy have made it an essential part of our experimental setup.

Sándor Balogh

4.8

out of

5

We're thrilled with the H-type electrolytic cell. Its user-friendly design and precise measurements have made it a favorite among our researchers.

Éva Tóth

PDF - H Type Electrolytic Cell Triple Electrochemical Cell

Download

Catalog of Electrochemical Consumables

Download

Catalog of H Type Electrolytic Cell

Download

Catalog of Auxiliary Electrode

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

PTFE Electrolytic Cell Electrochemical Cell Corrosion-Resistant Sealed and Non-Sealed

PTFE Electrolytic Cell Electrochemical Cell Corrosion-Resistant Sealed and Non-Sealed

Choose our PTFE Electrolytic Cell for reliable, corrosion-resistant performance. Customize specifications with optional sealing. Explore now.

Multifunctional Electrolytic Electrochemical Cell Water Bath Single Layer Double Layer

Multifunctional Electrolytic Electrochemical Cell Water Bath Single Layer Double Layer

Discover our high-quality Multifunctional Electrolytic Cell Water Baths. Choose from single or double-layer options with superior corrosion resistance. Available in 30ml to 1000ml sizes.

Electrolytic Electrochemical Cell Gas Diffusion Liquid Flow Reaction Cell

Electrolytic Electrochemical Cell Gas Diffusion Liquid Flow Reaction Cell

Looking for a high-quality gas diffusion electrolysis cell? Our liquid flow reaction cell boasts exceptional corrosion resistance and complete specifications, with customizable options available to suit your needs. Contact us today!

Quartz Electrolytic Electrochemical Cell for Electrochemical Experiments

Quartz Electrolytic Electrochemical Cell for Electrochemical Experiments

Looking for a reliable quartz electrochemical cell? Our product boasts excellent corrosion resistance and complete specifications. With high-quality materials and good sealing, it's both safe and durable. Customize to meet your needs.

Flat Corrosion Electrolytic Electrochemical Cell

Flat Corrosion Electrolytic Electrochemical Cell

Discover our flat corrosion electrolytic cell for electrochemical experiments. With exceptional corrosion resistance and complete specifications, our cell guarantees optimal performance. Our high-quality materials and good sealing ensure a safe and durable product, and customization options are available.

Electrolytic Electrochemical Cell with Five-Port

Electrolytic Electrochemical Cell with Five-Port

Streamline your laboratory consumables with Kintek's Electrolytic Cell with five-port design. Choose from sealed and non-sealed options with customizable electrodes. Order now.

Related Articles

Applications of H-Type Electrolytic Cell in Metal Extraction

Applications of H-Type Electrolytic Cell in Metal Extraction

H-type electrolytic cells uses an electrolyte solution to dissolve the metal ions and an electric current to separate the metal ions from the solution.

Find out more
Understanding Electrolytic Cells and Their Role in Copper Purification and Electroplating

Understanding Electrolytic Cells and Their Role in Copper Purification and Electroplating

Electrolytic cells play a crucial role in various industrial processes, including copper purification and electroplating. These cells utilize an external power source to drive chemical reactions, resulting in the decomposition of substances. Through the process of electrolysis, an electric current is passed through a liquid or solution containing ions, causing them to break down.

Find out more
Understanding Quartz Electrolytic Cells: Applications, Mechanisms, and Advantages

Understanding Quartz Electrolytic Cells: Applications, Mechanisms, and Advantages

Explore the detailed workings, applications, and benefits of quartz electrolytic cells in various industries. Learn how these cells facilitate precise chemical reactions and their role in high-purity metal production.

Find out more
Overcoming Challenges with H-Type Electrolytic Cell Operation

Overcoming Challenges with H-Type Electrolytic Cell Operation

Understanding the components and operation of the H-type electrolytic cell is crucial in producing high-quality chemicals and overcoming the challenges that come with its operation.

Find out more
Understanding Electrodes and Electrochemical Cells

Understanding Electrodes and Electrochemical Cells

An electrode is a point where current enters and leaves the electrolyte. It is a conductor used to make a junction with a nonmetallic part of a circuit. Electrodes can be made of materials such as gold, platinum, carbon, graphite, or metal. They serve as the surface for oxidation-reduction reactions in electrochemical cells. There are different types of electrodes, including anode and cathode.

Find out more
Applications of Electrolytic Cells in Purification and Electroplating

Applications of Electrolytic Cells in Purification and Electroplating

Electrolytic cells are chemical cells that use electricity to generate a non-spontaneous redox reaction. These cells are used in various electrochemical processes such as electrolysis and electroplating.

Find out more
Electrochemistry The Science Behind Electrochemical Cells

Electrochemistry The Science Behind Electrochemical Cells

Electrochemistry is important because it helps us understand the behavior of materials and substances in different environments.

Find out more
Understanding Electrolytic Cells: Conversion of Energy and Applications

Understanding Electrolytic Cells: Conversion of Energy and Applications

Electrochemical cell An electrochemical cell is a device capable of either generating electrical energy from chemical reactions or facilitating chemical reactions through the introduction of electrical energy.

Find out more
Understanding Flat Corrosion Electrolytic Cells: Applications, Mechanisms, and Prevention Techniques

Understanding Flat Corrosion Electrolytic Cells: Applications, Mechanisms, and Prevention Techniques

Explore the detailed workings of flat corrosion electrolytic cells, their role in industrial processes, and effective strategies to mitigate corrosion. Learn about electrolytic cells, their components, and applications in electroplating and metal purification.

Find out more
Electrochemical Cells: Generating Electricity and Driving Reactions

Electrochemical Cells: Generating Electricity and Driving Reactions

Electrochemical cells, like batteries, play a vital role in energy storage by converting chemical energy to electrical energy and vice versa. Explore the workings, types, and significance of these cells.

Find out more
Benefits of Electrochemical Cells for Energy Storage

Benefits of Electrochemical Cells for Energy Storage

Electrochemical cells are devices that convert chemical energy into electrical energy through the use of oxidation-reduction reactions. They are widely used in various applications such as energy storage, fuel cells, and batteries.

Find out more
Advanced Electrolytic Cell Techniques for Cutting-Edge Lab Research

Advanced Electrolytic Cell Techniques for Cutting-Edge Lab Research

Electrolytic cells are devices that utilize an electric current to induce a non-spontaneous chemical reaction.

Find out more