Thematics H Type Electrolytic Cell

h type electrolytic cell

The H-type electrolytic cell is a unique electrochemical cell that consists of two connected electrochemical cells. It features a replaceable membrane seal, multiple electrode feedthroughs, and gas inlet/outlet for easy degassing. Electrolysis, a process that uses electrical energy to drive a non-spontaneous redox reaction, is frequently employed to break down chemical substances. An H-type electrolytic cell is used for electroplating and to break down typically stable or inert chemical substances in solution.


We have the best H Type Electrolytic Cell solutions available in the market. Our extensive portfolio guarantees that we have an appropriate standard solution that will meet your needs

Applications of H Type Electrolytic Cell

  • Production of high-purity aluminum
  • Electrorefining of non-ferrous metals such as copper and zinc
  • Electrowinning of metals
  • Electroplating of metals such as copper, nickel, and chromium
  • Decomposition of chemical compounds like water into hydrogen and oxygen
  • Production of caustic soda

Advantages of H Type Electrolytic Cell

  • The H-type replaceable membrane sealed electrolytic cell is featured with replaceable membrane seal, a gas inlet and outlet for easy degassing, and multiple electrode feedthroughs for working electrodes, counter electrodes, and reference electrodes.
  • This type of cell provides greater stability and accuracy in electrochemical experiments due to its sealed design.
  • The H-type electrolytic cell allows for greater flexibility in electrode placement, which enables more complex experiments to be conducted.
  • The replaceable membrane seal feature of this type of cell allows for easier maintenance and repairs, which reduces downtime in the lab.
  • H-type electrolytic cells are widely used in research and industrial applications due to their high efficiency in producing high-purity metals and other materials.

Our H Type Electrolytic Cell is a cost-effective and highly customizable solution for your laboratory needs. With our custom design service, we can cater to your specific requirements, ensuring that you get the exact product you need.

FAQ

What Is The H Type Of Electrochemical Cell?

The H-type electrochemical cell is a replaceable membrane sealed cell that consists of two electrochemical cells coupled together. It features a gas inlet and outlet for easy degassing and multiple electrode feedthroughs for working, counter, and reference electrodes.

What Is H-cell Used For?

The H-Cell is a two-compartment electrochemical cell used for membrane testing, H2 permeation, or any other experiment where two separate electrode chambers are required. Both compartments can be separated by an ion-exchange membrane.

What Is The H Type Microbial Fuel Cell?

The Microbial H-Cell is a Microbial Fuel Cell (MFC) reactor chamber. The H-cell is defined according to the shape of the cell. It can be used as reactor and other electrochemical cells. The assembled H-cell has a volume of 100ml on each side of chamber.

How Many Types Of Electrolytic Cells Are There?

There are two main types of electrolysis cells: The first type is called a "membrane cell" or "diaphragm cell". In this type of cell, a porous membrane or diaphragm is placed between the anode and cathode to prevent the reactions at each electrode from mixing.

What Is The H Cell For Hydrogen Permeation Experiments?

The Devanathan-Stachurski cell (or «H cell») is successfully used to evaluate the permeation of hydrogen through sheets or membranes. An H cell consists of two electrochemical compartments separated by a sheet which acts as a working electrode (WE) in both cells.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

The Glass Heart of the Experiment: Precision Through Systematic Care

The Glass Heart of the Experiment: Precision Through Systematic Care

Routine maintenance of double-layer electrolytic cells isn't just cleaning—it's calibration. Discover the systematic protocol for reproducible electrochemical data.

Read more
The Thermodynamic Paradox: Balancing Precision and Safety in Electrolytic Cells

The Thermodynamic Paradox: Balancing Precision and Safety in Electrolytic Cells

Master temperature control in double-layer water-bath electrolytic cells. Understand material limitations, prevent thermal damage, and ensure data integrity.

Read more
The Thermodynamics of Consistency: Mastering the Invisible Variable in Electrolysis

The Thermodynamics of Consistency: Mastering the Invisible Variable in Electrolysis

Discover why temperature is the silent killer of electrochemical precision. Learn how double-layer electrolytic cells engineer thermal stability for repeatable results.

Read more
The Art of the Empty Vessel: Preparing Quartz Electrolytic Cells for Absolute Precision

The Art of the Empty Vessel: Preparing Quartz Electrolytic Cells for Absolute Precision

Reliable electrochemical data isn't just about the reaction; it's about the setup. Discover the systematic approach to preparing quartz cells for perfect fidelity.

Read more
The Thermodynamics of Patience: Preventing Electrolytic Cell Overload

The Thermodynamics of Patience: Preventing Electrolytic Cell Overload

Overloading an electrolytic cell isn't just an error; it's a systemic failure. Learn the physics of safety, the risks of excess energy, and how to maintain control.

Read more
The Architecture of Precision: Mastering the Five-Port Water Bath Electrolytic Cell

The Architecture of Precision: Mastering the Five-Port Water Bath Electrolytic Cell

Mastering the electrolytic cell is not just about chemistry; it is about discipline. Learn the systematic approach to preparation, operation, and maintenance.

Read more
The Geometry of Truth: Why the Maintenance of Your Optical Electrolytic Cell Defines Your Data

The Geometry of Truth: Why the Maintenance of Your Optical Electrolytic Cell Defines Your Data

Great data isn't just about the experiment; it's about the vessel. Learn the rigorous maintenance protocols for side-window optical electrolytic cells.

Read more
The Quiet Discipline: Mastering the Post-Use Protocol for Five-Port Electrolytic Cells

The Quiet Discipline: Mastering the Post-Use Protocol for Five-Port Electrolytic Cells

Learn the methodical post-use care for five-port water bath electrolytic cells. Prevent corrosion, ensure safety, and protect your experimental data.

Read more
The Architecture of Reaction: Selecting the Right Electrolytic Cell Body

The Architecture of Reaction: Selecting the Right Electrolytic Cell Body

Discover how cell volume and sealing impact electrochemical data. Learn to balance scarcity, scale, and sensitivity with the right lab equipment choices.

Read more
The Architecture of Control: Mastering the Super-Sealed Electrolytic Cell

The Architecture of Control: Mastering the Super-Sealed Electrolytic Cell

Precision in electrochemistry isn't just about theory; it's about mechanical discipline. Learn the critical protocols for super-sealed electrolytic cells.

Read more
The Architecture of Invisible Containment: Why Material Choice Defines Electrochemical Precision

The Architecture of Invisible Containment: Why Material Choice Defines Electrochemical Precision

Explore the strategic engineering behind High Borosilicate Glass and PTFE in electrolytic cells—balancing visibility with absolute chemical inertness.

Read more
The Thermodynamics of Precision: Mastering the Double-Layer Electrolytic Cell

The Thermodynamics of Precision: Mastering the Double-Layer Electrolytic Cell

Precision isn't accidental. Discover the methodical operation of double-layer electrolytic cells, where thermal stability and rigid setup define success.

Read more
The Silent Variable: Engineering Reliability in Electrolytic Cells

The Silent Variable: Engineering Reliability in Electrolytic Cells

Data accuracy depends on equipment integrity. Learn the engineering protocols for maintaining electrolytic cells to prevent systemic error.

Read more
The Quiet Architecture of Clarity: Preserving Side-Window Optical Cells

The Quiet Architecture of Clarity: Preserving Side-Window Optical Cells

Learn the precise protocols for storing optical electrolytic cells. Prevent thermal degradation, chemical etching, and data drift with expert maintenance strategies.

Read more
The Silence of the Seal: Why Electrochemical Precision is a Battle Against the Atmosphere

The Silence of the Seal: Why Electrochemical Precision is a Battle Against the Atmosphere

Precision in electrochemistry isn't just about voltage; it's about isolation. Discover how super-sealed cells defeat contamination and define reproducibility.

Read more
The Silent Partner: Why Material Choice in Electrochemistry is a Matter of Trust

The Silent Partner: Why Material Choice in Electrochemistry is a Matter of Trust

Discover why high borosilicate glass and PTFE are the non-negotiable standards for electrolytic cells. A deep dive into material science for precise data.

Read more
Your Induction Furnace Is Failing You. The Reason Isn't What You Think.

Your Induction Furnace Is Failing You. The Reason Isn't What You Think.

Struggling with inconsistent melts or high costs? The problem may be a fundamental mismatch in your induction furnace type. Learn to fix it.

Read more
The Art of the Non-Spontaneous: Precision in Electrolytic Circuits

The Art of the Non-Spontaneous: Precision in Electrolytic Circuits

Mastering the electrolytic cell setup requires more than connecting wires. It demands a systematic approach to polarity, purity, and power control.

Read more
Glymercury Electrode: Composition, Characteristics, and Applications

Glymercury Electrode: Composition, Characteristics, and Applications

An in-depth look at the glymercury electrode, its composition, characteristics, and applications in analytical chemistry.

Read more
Use and Care of Reference Electrodes

Use and Care of Reference Electrodes

Detailed guide on the use, calibration, and maintenance of reference electrodes in electrochemical studies.

Read more