Products Lab Consumables & Materials Lab Materials Titanium Silicon Alloy (TiSi) Sputtering Target / Powder / Wire / Block / Granule
Titanium Silicon Alloy (TiSi) Sputtering Target / Powder / Wire / Block / Granule

Lab Materials

Titanium Silicon Alloy (TiSi) Sputtering Target / Powder / Wire / Block / Granule

Item Number : LM-TiSi

Price varies based on specs and customizations


Chemical Formula
TiSi
Purity
3N
Commonly used ratio
Ti:Si= 1:2 at%
Shape
discs / wire / block / powder / plates / column targets / step target / custom-made
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

At reasonable prices, we offer Titanium Silicon Alloy (TiSi) materials for laboratory use. Our expertise lies in producing and tailoring Titanium Silicon Alloy (TiSi) materials of different purities, shapes, and sizes to meet your unique requirements.

We provide a wide range of specifications and sizes for various products, including sputtering targets (circular, square, tubular, irregular), coating materials, cylinders, cones, particles, foils, powders, 3D printing powders, nanometer powders, wire rods, ingots, and blocks.

Details

Titanium Silicon Alloy (TiSi) Sputtering Target
Titanium Silicon Alloy (TiSi) Sputtering Target
Titanium Silicon Alloy (TiSi) Sputtering Target
Titanium Silicon Alloy (TiSi) Sputtering Target
Titanium Silicon Alloy (TiSi) Sputtering Target
Titanium Silicon Alloy (TiSi) Sputtering Target

About Titanium Silicon Alloy (TiSi)

Titanium Silicon Alloy (TiSi) is a versatile material that is widely available in various forms such as bar, ingot, ribbon, wire, shot, sheet, and foil. These forms can be easily obtained in most volumes, making TiSi a readily available option for various applications.

Ultra high purity and high purity TiSi forms are also available, including metal powder, submicron powder, and nanoscale materials. Additionally, TiSi targets are available for thin film deposition, while pellets are available for chemical vapor deposition (CVD) and physical vapor deposition (PVD) applications.

We produce TiSi in many standard grades, including Mil Spec (military grade), ACS, Reagent, and Technical Grade, Food, Agricultural and Pharmaceutical Grade, Optical Grade, and USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia). Our products meet applicable ASTM testing standards, ensuring consistent quality and reliability.

We offer typical and custom packaging options, making it easy to receive TiSi in a form that suits your specific needs. Some primary applications of TiSi include bearing assembly, ballast, casting, step soldering, and radiation shielding.

Ingredient Quality Control

Raw material composition analysis
Through the use of equipment such as ICP and GDMS, the content of metal impurities is detected and analyzed to ensure that it meets the purity standard;

Non-metallic impurities are detected by equipment such as carbon and sulfur analyzers, nitrogen and oxygen analyzers.
Metallographic flaw detection analysis
The target material is inspected using flaw detection equipment to ensure that there are no defects or shrinkage holes inside the product;

Through metallographic testing, the internal grain structure of the target material is analyzed to ensure that the grains are fine and dense.
Appearance and dimension inspection
Product dimensions are measured using micrometers and precision calipers to ensure compliance with drawings;

The surface finish and cleanliness of the product are measured using a surface cleanliness meter.

Conventional Sputtering Target Sizes

Preparation process
hot isostatic pressing, vacuum melting, etc.
Sputtering target shape
plane sputtering target, multi-arc sputtering target, step sputtering target, special-shaped sputtering target
Round sputtering target size
Diameter: 25.4mm / 50mm / 50.8mm / 60mm / 76.2mm / 80mm / 100mm / 101.6mm / 152.4mm
Thickness: 3mm / 4mm / 5mm / 6mm / 6.35mm
Size can be customized.
Square sputtering target size
50×50×3mm / 100×100×4mm / 300×300×5mm, size can be customized

Available Metal Forms

Metal Forms Details

We manufacture almost all the metals listed on the periodic table in a wide range of forms and purities, as well as standard sizes and dimensions. We can also produce custom-made products to meet specific customer requirements, such as size, shape, surface area, composition, and more. The following list provides a sample of the forms we offer, but it is not exhaustive. If you need laboratory consumables, please contact us directly to request a quote.

  • Flat/Planar Forms: Board, Film, Foil, Microfoil, Microleaf, Paper, Plate, Ribbon, Sheet, Strip, Tape, Wafer
  • Preformed Shapes: Anodes, Balls, Bands, Bars, Boats, Bolts, Briquettes, Cathodes, Circles, Coils, Crucibles, Crystals, Cubes, Cups, Cylinders, Discs, Electrodes, Fibers, Filaments, Flanges, Grids, Lenses, Mandrels, Nuts, Parts, Prisms, Pucks, Rings, Rods, Shapes, Shields, Sleeves, Springs, Squares, Sputtering Targets, Sticks, Tubes, Washers, Windows, Wires
  • Microsizes: Beads, Bits, Capsules, Chips, Coins, Dust, Flakes, Grains, Granules, Micropowder, Needles, Particles, Pebbles, Pellets, Pins, Pills, Powder, Shavings, Shot, Slugs, Spheres, Tablets
  • Macrosizes: Billets, Chunks, Cuttings, Fragments, Ingots, Lumps, Nuggets, Pieces, Punchings, Rocks, Scraps, Segments, Turnings
  • Porous and Semi-Porous: Fabric, Foam, Gauze, Honeycomb, Mesh, Sponge, Wool
  • Nanoscale: Nanoparticles, Nanopowders, Nanofoils, Nanotubes, Nanorods, Nanoprisms
  • Others: Concentrate, Ink, Paste, Precipitate, Residue, Samples, Specimens

KinTek specializes in the manufacturing of high-purity and ultra-high-purity materials with a purity range of 99.999% (5N), 99.9999% (6N), 99.99995% (6N5), and in some cases, up to 99.99999% (7N). Our materials are available in specific grades, including UP/UHP, semiconductor, electronic, deposition, fiber optic, and MBE grades. Our high-purity metals, oxides, and compounds are specifically crafted to meet the rigorous demands of high-technology applications and are ideal for use as dopants and precursor materials for thin film deposition, crystal growth of semiconductors, and synthesis of nanomaterials. These materials find use in advanced microelectronics, solar cells, fuel cells, optical materials, and other cutting-edge applications.

Packaging

We use vacuum packaging for our high-purity materials, and each material has specific packaging tailored to its unique characteristics. For instance, our Hf sputter target is externally tagged and labeled to facilitate efficient identification and quality control. We take great care to prevent any damage that could occur during storage or transportation.

FAQ

What is Physical vapor deposition (PVD)?

Physical vapor deposition (PVD) is a technique for depositing thin films by vaporizing a solid material in a vacuum and then depositing it onto a substrate. PVD coatings are highly durable, scratch-resistant, and corrosion-resistant, making them ideal for a variety of applications, from solar cells to semiconductors. PVD also creates thin films that can withstand high temperatures. However, PVD can be costly, and the cost varies depending on the method used. For instance, evaporation is a low-cost PVD method, while ion beam sputtering is rather expensive. Magnetron sputtering, on the other hand, is more expensive but more scalable.

What is sputtering target?

A sputtering target is a material used in the process of sputter deposition, which involves breaking up the target material into tiny particles that form a spray and coat a substrate, such as a silicon wafer. Sputtering targets are typically metallic elements or alloys, although some ceramic targets are available. They come in a variety of sizes and shapes, with some manufacturers creating segmented targets for larger sputtering equipment. Sputtering targets have a wide range of applications in fields such as microelectronics, thin film solar cells, optoelectronics, and decorative coatings due to their ability to deposit thin films with high precision and uniformity.

What are high purity materials?

High purity materials refer to substances that are free from impurities and possess a high level of chemical homogeneity. These materials are essential in various industries, particularly in the field of advanced electronics, where impurities can significantly affect the performance of devices. High purity materials are obtained through various methods, including chemical purification, vapor-phase deposition, and zone refining. In the preparation of electronic grade single crystal diamond, for example, a high-purity raw material gas and an efficient vacuum system are necessary to achieve the desired level of purity and homogeneity.

What is magnetron sputtering?

Magnetron sputtering is a plasma-based coating technique used to produce very dense films with excellent adhesion, making it a versatile method for creating coatings on materials that have high melting points and cannot be evaporated. This method generates a magnetically confined plasma near the surface of a target, where positively charged energetic ions collide with the negatively charged target material, causing atoms to be ejected or "sputtered." These ejected atoms are then deposited on a substrate or wafer to create the desired coating.

How are sputtering targets made?

Sputtering targets are made using a variety of manufacturing processes depending on the properties of the target material and its application. These include vacuum melting and rolling, hot-pressed, special press-sintered process, vacuum hot-pressed, and forged methods. Most sputtering target materials can be fabricated into a wide range of shapes and sizes, with circular or rectangular shapes being the most common. Targets are usually made from metallic elements or alloys, but ceramic targets can also be used. Compound sputtering targets are also available, made from a variety of compounds including oxides, nitrides, borides, sulphides, selenides, tellurides, carbides, crystalline, and composite mixtures.

Why magnetron sputtering?

Magnetron sputtering is preferred due to its ability to achieve high precision in film thickness and density of coatings, surpassing evaporation methods. This technique is especially suitable for creating metallic or insulating coatings with specific optical or electrical properties. Additionally, magnetron sputtering systems can be configured with multiple magnetron sources.

What is sputtering target used for?

Sputtering targets are used in a process called sputtering to deposit thin films of a material onto a substrate using ions to bombard the target. These targets have a wide range of applications in various fields, including microelectronics, thin film solar cells, optoelectronics, and decorative coatings. They allow for the deposition of thin films of materials onto a variety of substrates with high precision and uniformity, making them an ideal tool for producing precision products. Sputtering targets come in various shapes and sizes and can be specialized to meet the specific requirements of the application.

What are the materials used in thin film deposition?

Thin film deposition commonly utilizes metals, oxides, and compounds as materials, each with its unique advantages and disadvantages. Metals are preferred for their durability and ease of deposition but are relatively expensive. Oxides are highly durable, can withstand high temperatures, and can be deposited at low temperatures, but can be brittle and challenging to work with. Compounds offer strength and durability, can be deposited at low temperatures and tailored to exhibit specific properties.

The selection of material for a thin film coating is dependent on the application requirements. Metals are ideal for thermal and electrical conduction, while oxides are effective in offering protection. Compounds can be tailored to suit specific needs. Ultimately, the best material for a particular project will depend on the specific needs of the application.

What are sputtering targets for electronics?

Sputtering targets for electronics are thin discs or sheets of materials such as aluminum, copper, and titanium that are used to deposit thin films onto silicon wafers to create electronic devices like transistors, diodes, and integrated circuits. These targets are used in a process called sputtering, in which atoms of the target material are physically ejected from the surface and deposited onto a substrate by bombarding the target with ions. Sputtering targets for electronics are essential in the production of microelectronics and typically require high precision and uniformity to ensure quality devices.

What are the methods to achieve optimal thin film deposition?

To achieve thin films with desirable properties, high-quality sputtering targets and evaporation materials are essential. The quality of these materials can be influenced by various factors, such as purity, grain size, and surface condition.

The purity of sputtering targets or evaporation materials plays a crucial role, as impurities can cause defects in the resulting thin film. Grain size also affects the quality of the thin film, with larger grains leading to poor film properties. Additionally, the surface condition is crucial, since rough surfaces can result in defects in the film.

To attain the highest quality sputtering targets and evaporation materials, it is crucial to select materials that possess high purity, small grain size, and smooth surfaces.

Uses of Thin Film Deposition

Zinc Oxide-Based Thin Films

ZnO thin films find applications in several industries such as thermal, optical, magnetic, and electrical, but their primary use is in coatings and semiconductor devices.

Thin-Film Resistors

Thin-film resistors are crucial for modern technology and are used in radio receivers, circuit boards, computers, radiofrequency devices, monitors, wireless routers, Bluetooth modules, and cell phone receivers.

Magnetic Thin Films

Magnetic thin films are used in electronics, data storage, radio-frequency identification, microwave devices, displays, circuit boards, and optoelectronics as key components.

Optical Thin Films

Optical coatings and optoelectronics are standard applications of optical thin films. Molecular beam epitaxy can produce optoelectronic thin-film devices (semiconductors), where epitaxial films are deposited one atom at a time onto the substrate.

Polymer Thin Films

Polymer thin films are used in memory chips, solar cells, and electronic devices. Chemical deposition techniques (CVD) offer precise control of polymer film coatings, including conformance and coating thickness.

Thin-Film Batteries

Thin-film batteries power electronic devices such as implantable medical devices, and the lithium-ion battery has advanced significantly thanks to the use of thin films.

Thin-Film Coatings

Thin-film coatings enhance the chemical and mechanical characteristics of target materials in various industries and technological fields. Anti-reflective coatings, anti-ultraviolet or anti-infrared coatings, anti-scratch coatings, and lens polarization are some common examples.

Thin-Film Solar Cells

Thin-film solar cells are essential to the solar energy industry, enabling the production of relatively cheap and clean electricity. Photovoltaic systems and thermal energy are the two main applicable technologies.

What is the lifetime of a sputtering target?

The lifetime of a sputtering target depends on factors such as the material composition, purity, and the specific application it is being used for. Generally, targets can last for several hundred to a few thousand hours of sputtering, but this can vary widely depending on the specific conditions of each run. Proper handling and maintenance can also extend the lifetime of a target. In addition, the use of rotary sputtering targets can increase runtimes and reduce the occurrence of defects, making them a more cost-effective option for high volume processes.

Factors and Parameters that Influence Deposition of Thin Films

Deposition Rate:

The rate at which the film is produced, typically measured in thickness divided by time, is crucial for selecting a technology suitable for the application. Moderate deposition rates are sufficient for thin films, while quick deposition rates are necessary for thick films. It is important to strike a balance between speed and precise film thickness control.

Uniformity:

The consistency of the film across the substrate is known as uniformity, which usually refers to film thickness but can also relate to other properties such as the index of refraction. It is important to have a good understanding of the application to avoid under- or over-specifying uniformity.

Fill Capability:

Fill capability or step coverage refers to how well the deposition process covers the substrate's topography. The deposition method used (e.g., CVD, PVD, IBD, or ALD) has a significant impact on step coverage and fill.

Film Characteristics:

The characteristics of the film depend on the application's requirements, which can be categorized as photonic, optical, electronic, mechanical, or chemical. Most films must meet requirements in more than one category.

Process Temperature:

Film characteristics are significantly affected by process temperature, which may be limited by the application.

Damage:

Each deposition technology has the potential to damage the material being deposited upon, with smaller features being more susceptible to process damage. Pollution, UV radiation, and ion bombardment are among the potential sources of damage. It is crucial to understand the limitations of the materials and tools.

View more faqs for this product

4.8

out of

5

KINTEK SOLUTION's TiSi Sputtering Target offers exceptional quality at a competitive price. The customizable options for purity, shape, and size make it an excellent choice for various applications.

Antonina Tkachenko

4.9

out of

5

I'm impressed with the purity and consistency of KINTEK SOLUTION's TiSi materials. They have consistently met our strict quality standards, making them a reliable partner for our research.

Yusuf Tunc

4.7

out of

5

The Titanium Silicon Alloy from KINTEK SOLUTION has proven to be a valuable addition to our lab. Its versatility and availability in various forms have made it a go-to material for multiple projects.

Carla Goncalves

4.9

out of

5

Working with KINTEK SOLUTION has been a pleasure. Their expertise in tailoring TiSi materials to our specific requirements has enabled us to achieve exceptional results in our research.

Damien Dubois

4.6

out of

5

KINTEK SOLUTION's TiSi Sputtering Target has significantly improved the quality of our thin films. The low particle counts have resulted in smoother and more uniform coatings.

Elisa Russo

4.8

out of

5

The customizable packaging options offered by KINTEK SOLUTION are a lifesaver. We can easily receive TiSi in forms that perfectly suit our experimental setups, saving us time and resources.

Javier Hernandez

4.7

out of

5

The Titanium Silicon Alloy from KINTEK SOLUTION has proven to be a reliable material for our CVD and PVD applications. Its consistent quality ensures repeatable and successful experiments.

Anna Kowalska

4.9

out of

5

KINTEK SOLUTION's TiSi Sputtering Target has enabled us to achieve exceptional results in our research. The high purity and fine grain structure have contributed to the superior performance of our devices.

Peter Schmidt

4.6

out of

5

The technical support provided by KINTEK SOLUTION is outstanding. Their experts have guided us through every step of the process, ensuring successful implementation of TiSi materials in our laboratory.

Maria Rodriguez

4.8

out of

5

KINTEK SOLUTION's TiSi materials have met all our expectations. The fast delivery and responsive customer service have made working with them a seamless and enjoyable experience.

Ahmed Ali

4.7

out of

5

The Titanium Silicon Alloy from KINTEK SOLUTION has proven to be a cost-effective option for our research. Its durability and longevity have reduced our material consumption and saved us money.

Olivia Dubois

4.9

out of

5

The technological advancements incorporated into KINTEK SOLUTION's TiSi materials have enabled us to explore new possibilities in our research. Their commitment to innovation is truly commendable.

Lucas Silva

4.6

out of

5

I highly recommend KINTEK SOLUTION for their reliable and high-quality TiSi materials. Their products have consistently met our stringent requirements, making them an invaluable asset to our laboratory.

Elena Petrova

PDF of LM-TiSi

Download

Catalog of Lab Materials

Download

Catalog of Sputtering Targets

Download

Catalog of High Purity Materials

Download

Catalog of Thin Film Deposition Materials

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

High Purity Titanium (Ti) Sputtering Target / Powder / Wire / Block / Granule

High Purity Titanium (Ti) Sputtering Target / Powder / Wire / Block / Granule

Shop for high-quality Titanium (Ti) materials at reasonable prices for laboratory use. Find a wide range of tailored products to suit your unique needs, including sputtering targets, coatings, powders, and more.

Titanium Carbide (TiC) Sputtering Target / Powder / Wire / Block / Granule

Titanium Carbide (TiC) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Titanium Carbide (TiC) materials for your lab at affordable prices. We offer a wide range of shapes and sizes, including sputtering targets, powders, and more. Tailored to your specific needs.

Titanium Nickel Silver Alloy (TiNiAg) Sputtering Target / Powder / Wire / Block / Granule

Titanium Nickel Silver Alloy (TiNiAg) Sputtering Target / Powder / Wire / Block / Granule

Looking for customizable TiNiAg materials? We offer a wide range of sizes and purities at competitive prices, including sputtering targets, coating materials, powders, and more. Contact us today!

Tungsten Titanium Alloy (WTi) Sputtering Target / Powder / Wire / Block / Granule

Tungsten Titanium Alloy (WTi) Sputtering Target / Powder / Wire / Block / Granule

Discover our Tungsten Titanium Alloy (WTi) materials for laboratory use at affordable prices. Our expertise allows us to produce custom materials of different purities, shapes, and sizes. Choose from a wide range of sputtering targets, powders, and more.

Titanium Nitride (TiN) Sputtering Target / Powder / Wire / Block / Granule

Titanium Nitride (TiN) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Titanium Nitride (TiN) materials for your lab? Our expertise lies in producing tailored materials of different shapes and sizes to meet your unique needs. We offer a wide range of specifications and sizes for sputtering targets, coatings, and more.

High Purity Titanium Dioxide (TiO2) Sputtering Target / Powder / Wire / Block / Granule

High Purity Titanium Dioxide (TiO2) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Titanium Dioxide materials? Our tailored products suit any lab's unique requirements. Browse our range of shapes, sizes, and purities today.

High-purity titanium foil / titanium sheet

High-purity titanium foil / titanium sheet

Titanium is chemically stable, with a density of 4.51g/cm3, which is higher than aluminum and lower than steel, copper, and nickel, but its specific strength ranks first among metals.

Nickel Silicon Alloy (NiSi) Sputtering Target / Powder / Wire / Block / Granule

Nickel Silicon Alloy (NiSi) Sputtering Target / Powder / Wire / Block / Granule

Looking for Nickel Silicon Alloy materials for your lab? Our expertly produced and tailored materials come in various shapes and sizes to suit your unique needs. Get sputtering targets, coating materials, powders, and more at reasonable prices.

Aluminum-plastic flexible packaging film for lithium battery packaging

Aluminum-plastic flexible packaging film for lithium battery packaging

Aluminum-plastic film has excellent electrolyte properties and is an important safe material for soft-pack lithium batteries. Unlike metal case batteries, pouch batteries wrapped in this film are safer.

Zirconium Silicon Alloy (ZrSi) Sputtering Target / Powder / Wire / Block / Granule

Zirconium Silicon Alloy (ZrSi) Sputtering Target / Powder / Wire / Block / Granule

Discover our Zirconium Silicon Alloy (ZrSi) materials for laboratory use at affordable prices. We produce tailored materials to fit your unique requirements, offering a wide range of specifications and sizes for sputtering targets, coating materials, powders, and more.

Button battery storage box

Button battery storage box

Button-type battery storage box, detachable, high-quality PP environmental protection material; suitable for small objects/chemicals, etc., thickened, compressive, durable, and available in a variety of styles.

Aluminum Silicon Yttrium alloy (AlSiY) Sputtering Target / Powder / Wire / Block / Granule

Aluminum Silicon Yttrium alloy (AlSiY) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality AlSiY materials tailored to your lab's unique needs. Our affordable range includes sputtering targets, powders, wire rods, and more in various sizes and shapes. Order now!

PTFE container

PTFE container

PTFE container is a container with excellent corrosion resistance and chemical inertness.

Lithium Titanate (Li2TiO3) Sputtering Target / Powder / Wire / Block / Granule

Lithium Titanate (Li2TiO3) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Lithium Titanate materials for your lab needs at affordable prices. We offer tailored solutions with different shapes, sizes, and purities. Find sputtering targets, powders, and more in various specifications.

PTFE acid and alkali resistant scoops/chemical powder material scoops

PTFE acid and alkali resistant scoops/chemical powder material scoops

Known for its excellent thermal stability, chemical resistance and electrical insulating properties, PTFE is a versatile thermoplastic material.

High Purity Tantalum (Ta) Sputtering Target / Powder / Wire / Block / Granule

High Purity Tantalum (Ta) Sputtering Target / Powder / Wire / Block / Granule

Discover our high-quality Tantalum (Ta) materials for laboratory use at affordable prices. We tailor to your specific requirements with various shapes, sizes, and purities. Explore our range of sputtering targets, coating materials, powders, and more.

High Purity Silicon (Si) Sputtering Target / Powder / Wire / Block / Granule

High Purity Silicon (Si) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Silicon (Si) materials for your laboratory? Look no further! Our custom-produced Silicon (Si) materials come in various purities, shapes, and sizes to suit your unique requirements. Browse our selection of sputtering targets, powders, foils, and more. Order now!

Aluminum foil current collector for lithium battery

Aluminum foil current collector for lithium battery

The surface of aluminum foil is extremely clean and hygienic, and no bacteria or microorganisms can grow on it. It is a non-toxic, tasteless and plastic packaging material.

Alumina (Al2O3) Crucible With Lid Cylindrical Laboratory Crucible

Alumina (Al2O3) Crucible With Lid Cylindrical Laboratory Crucible

Cylindrical Crucibles Cylindrical crucibles are one of the most common crucible shapes, suitable for melting and processing a wide variety of materials, and are easy to handle and clean.

Lithium battery tab tape

Lithium battery tab tape

PI polyimide tape, generally brown, also known as gold finger tape, high temperature resistance 280 ℃, to prevent the influence of heat sealing of soft pack battery lug glue, suitable for soft pack battery tab position glue.

Tantalum Tungsten Alloy (TaW) Sputtering Target / Powder / Wire / Block / Granule

Tantalum Tungsten Alloy (TaW) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Tantalum Tungsten Alloy (TaW) materials? We offer a wide range of customizable options at competitive prices for laboratory use, including sputtering targets, coatings, powders, and more.

Assemble Lab Cylindrical Press Mold

Assemble Lab Cylindrical Press Mold

Get reliable and precise molding with Assemble Lab Cylindrical Press Mold. Perfect for ultra-fine powder or delicate samples, widely used in material research and development.

High Purity Tellurium (Te) Sputtering Target / Powder / Wire / Block / Granule

High Purity Tellurium (Te) Sputtering Target / Powder / Wire / Block / Granule

Discover our range of high-quality Tellurium (Te) materials for laboratory use at affordable prices. Our expert team produces custom sizes and purities to fit your unique needs. Shop sputtering targets, powders, ingots, and more.

PTFE gasket

PTFE gasket

Gaskets are materials placed between two flat surfaces to enhance the seal. To prevent fluid leakage, sealing elements are arranged between static sealing surfaces.

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina ceramic crucibles are used in some materials and metal melting tools, and flat-bottomed crucibles are suitable for melting and processing larger batches of materials with better stability and uniformity.

High Purity Carbon (C) Sputtering Target / Powder / Wire / Block / Granule

High Purity Carbon (C) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Carbon (C) materials for your laboratory needs? Look no further! Our expertly produced and tailored materials come in a variety of shapes, sizes, and purities. Choose from sputtering targets, coating materials, powders, and more.

Conductive Carbon Cloth / Carbon Paper / Carbon Felt

Conductive Carbon Cloth / Carbon Paper / Carbon Felt

Conductive carbon cloth, paper, and felt for electrochemical experiments. High-quality materials for reliable and accurate results. Order now for customization options.