Knowledge How does furnace brazing work? 5 Key Steps Explained
Author avatar

Tech Team · Kintek Solution

Updated 2 months ago

How does furnace brazing work? 5 Key Steps Explained

Furnace brazing is a metalworking process that uses heat and a dissimilar metal filler material to join two metal pieces together.

This method is characterized by its use of brazing alloys with higher melting points than those used in soldering.

It is suitable for producing strong and durable bonds, especially in high volumes.

The process is typically carried out in a specialized furnace, which can be either batch-type or continuous.

The furnace operates in a controlled atmosphere to prevent oxidation and ensure the quality of the brazed joint.

How does furnace brazing work? 5 Key Steps Explained

How does furnace brazing work? 5 Key Steps Explained

1. Process Overview

Furnace brazing involves placing the components to be joined in a furnace.

The furnace is then sealed and evacuated of air to create a vacuum or filled with a protective gas.

This step is crucial as it prevents oxidation, which can hinder the brazing process by forming an oxide layer that interferes with the bonding of the metals.

2. Heating and Filler Material

The furnace is heated to a specific temperature, which is just above the melting point of the filler material but below the melting points of the base metals.

This ensures that the base metals do not melt during the process.

The filler material, which has a lower melting point than the base metals, melts and flows into the gap between the two pieces.

It forms a strong bond as it cools and solidifies.

3. Atmosphere Control

The controlled atmosphere in the furnace is a key feature of furnace brazing.

It can be either a vacuum or a gas environment, such as nitrogen or hydrogen.

This controlled environment not only prevents oxidation but also eliminates the need for fluxes, which are often used in other brazing methods to remove surface oxides.

This results in a cleaner process and reduces the need for post-braze cleaning.

4. Cooling and Quenching

After the brazing process is complete, the components are cooled, often in a separate chamber or area of the furnace.

This cooling or "quenching" process is carefully controlled to ensure the desired material properties are achieved in the finished assembly.

5. Benefits and Applications

Furnace brazing is particularly beneficial for its ability to produce high-quality, repeatable bonds in a semi-automated process.

It is cost-effective for high-volume production and is suitable for a wide range of metals and alloys.

The process is commonly used in industries such as aerospace, automotive, and electronics, where strong, reliable metal joints are critical.

Continue exploring, consult our experts

Discover the precision and power of KINTEK SOLUTION's furnace brazing solutions for your high-stakes metal joining needs.

With our expertise in controlled atmosphere brazing, you can achieve strong, durable bonds in high volumes.

Experience unparalleled quality and efficiency, tailored to the exact specifications of your aerospace, automotive, and electronics projects.

Elevate your manufacturing process with KINTEK SOLUTION – where advanced technology meets your metal bonding challenges.

Get in touch with us today and let's forge a stronger future together!

Related Products

Vacuum brazing furnace

Vacuum brazing furnace

A vacuum brazing furnace is a type of industrial furnace used for brazing, a metalworking process that joins two pieces of metal using a filler metal that melts at a lower temperature than the base metals. Vacuum brazing furnaces are typically used for high-quality applications where a strong, clean joint is required.

Vacuum induction melting furnace Arc Melting Furnace

Vacuum induction melting furnace Arc Melting Furnace

Get precise alloy composition with our Vacuum Induction Melting Furnace. Ideal for aerospace, nuclear energy, and electronic industries. Order now for effective smelting and casting of metals and alloys.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

Vacuum tube hot press furnace

Vacuum tube hot press furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

Horizontal high temperature graphitization furnace

Horizontal high temperature graphitization furnace

Horizontal Graphitization Furnace: This type of furnace is designed with the heating elements placed horizontally, allowing for uniform heating of the sample. It's well-suited for graphitizing large or bulky samples that require precise temperature control and uniformity.

High Thermal Conductivity Film Graphitization Furnace

High Thermal Conductivity Film Graphitization Furnace

The high thermal conductivity film graphitization furnace has uniform temperature, low energy consumption and can operate continuously.

Vacuum molybdenum wire sintering furnace

Vacuum molybdenum wire sintering furnace

A vacuum molybdenum wire sintering furnace is a vertical or bedroom structure, which is suitable for withdrawal, brazing, sintering and degassing of metal materials under high vacuum and high temperature conditions. It is also suitable for dehydroxylation treatment of quartz materials.

Small vacuum tungsten wire sintering furnace

Small vacuum tungsten wire sintering furnace

The small vacuum tungsten wire sintering furnace is a compact experimental vacuum furnace specially designed for universities and scientific research institutes. The furnace features a CNC welded shell and vacuum piping to ensure leak-free operation. Quick-connect electrical connections facilitate relocation and debugging, and the standard electrical control cabinet is safe and convenient to operate.

Ultra-high temperature graphitization furnace

Ultra-high temperature graphitization furnace

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials.

Hydrogen atmosphere furnace

Hydrogen atmosphere furnace

KT-AH Hydrogen atmosphere furnace - induction gas furnace for sintering/annealing with built-in safety features, dual housing design, and energy-saving efficiency. Ideal for lab and industrial use.

Vacuum arc furnace Induction melting furnace

Vacuum arc furnace Induction melting furnace

Discover the power of Vacuum Arc Furnace for melting active & refractory metals. High-speed, remarkable degassing effect, and free of contamination. Learn more now!

Molybdenum Vacuum furnace

Molybdenum Vacuum furnace

Discover the benefits of a high-configuration molybdenum vacuum furnace with heat shield insulation. Ideal for high-purity, vacuum environments like sapphire crystal growth and heat treatment.

Non consumable vacuum arc furnace Induction melting furnace

Non consumable vacuum arc furnace Induction melting furnace

Explore the benefits of Non-Consumable Vacuum Arc Furnace with high melting point electrodes. Small, easy to operate & eco-friendly. Ideal for laboratory research on refractory metals & carbides.

Vacuum pressure sintering furnace

Vacuum pressure sintering furnace

Vacuum pressure sintering furnaces are designed for high temperature hot pressing applications in metal and ceramic sintering. Its advanced features ensure precise temperature control, reliable pressure maintenance, and a robust design for seamless operation.


Leave Your Message