Knowledge How long should a sieve shaker be run for fine aggregate? Achieve Accurate Sieving Completeness
Author avatar

Tech Team · Kintek Solution

Updated 6 days ago

How long should a sieve shaker be run for fine aggregate? Achieve Accurate Sieving Completeness


While a common starting point is 10 to 15 minutes, the correct duration for running a sieve shaker is not a fixed time but the time required to achieve a verified endpoint. This duration is unique to your specific material, sample size, and equipment. Relying on a generic time without validation risks producing inaccurate and indefensible test results.

The goal of sieve analysis is not to shake for a set number of minutes, but to achieve sieving completeness. The correct duration is the minimum time required for the sample weight on each sieve to become stable, a point that must be confirmed with a standardized endpoint test.

How long should a sieve shaker be run for fine aggregate? Achieve Accurate Sieving Completeness

The Principle: Shaking to the Endpoint

The core of a reliable sieve analysis, as outlined in standards like ASTM C136, is the concept of "sieving to an endpoint." This ensures that practically all particles that can pass through a sieve mesh have had the opportunity to do so.

What is Sieving Completeness?

Sieving completeness is the state where further agitation of the material does not cause a significant amount of additional material to pass through any of the sieves in the stack.

The process is finished not when a timer goes off, but when the separation is effectively complete. This principle ensures results are repeatable, regardless of minor variations in equipment or operator.

The Standard Endpoint Test

To determine if you have reached completeness, you must perform an endpoint test. The standard method is straightforward:

  1. After an initial shaking period (e.g., 10 minutes), stop the shaker.
  2. Individually take each sieve, cover it, and shake it by hand for one minute.
  3. Weigh the material that passes through the sieve during that minute.
  4. If this weight is less than a specified limit (typically 0.5% of the total sample weight for fine aggregate sieves), the test for that sieve is considered complete.

If the weight passed exceeds the limit, the mechanical shaking was insufficient. You must return the material to the stack and continue shaking for a longer interval, then repeat the verification.

Why a Fixed Time Often Fails

Relying on a fixed time, like "15 minutes," is a common but flawed shortcut. It assumes that today's material, sample size, and shaker performance are identical to when that time was first established.

This assumption is rarely true. Factors like particle shape, moisture, and sieve condition constantly change, making periodic endpoint verification essential for accuracy.

Key Factors Influencing Sieving Time

The ideal sieving time is not a universal constant. It is a variable dependent on several critical factors in your specific lab environment.

Material Characteristics

Angular, rough particles (like crushed sand) will take significantly longer to sieve than smooth, rounded particles (like natural river sand).

Likewise, even a small amount of residual moisture can cause fine particles to clump together and stick to the sieve mesh, dramatically increasing the required time or making a complete separation impossible.

Sample Size and Sieve Overloading

Overloading a sieve is the most common error in sieve analysis. When too much material is placed on a sieve, it creates a bed of particles so deep that those at the bottom never get a chance to meet the mesh.

This "blinds" the sieve, preventing proper separation no matter how long you run the shaker. Always adhere to the maximum allowable weights for each sieve size as specified by your governing standard.

Sieve Shaker Energy

Different types of shakers (e.g., mechanical tapping vs. orbital vs. vibratory) impart different energy levels and patterns into the sieve stack.

Furthermore, the performance of a shaker can degrade over time due to wear on its mechanical components. A new, vigorous shaker may achieve endpoint in 8 minutes, while an older model might require 15 minutes for the same material.

Understanding the Trade-offs

Optimizing sieving time is a balance between laboratory efficiency and analytical accuracy. Understanding the consequences of getting it wrong is critical.

Insufficient Shaking: The Risk of Inaccurate Results

This is the most significant risk. If shaking is stopped too early, an excessive amount of fine material will be retained on coarser sieves.

This skews the gradation curve, making the sample appear coarser than it actually is. This can lead to incorrect mix designs, rejection of good material, or acceptance of bad material.

Excessive Shaking: Particle Degradation

For softer or more friable aggregates, shaking for too long can be just as problematic. The constant agitation and particle-on-particle impact can break down weaker particles.

This process creates artificial fines that were not present in the original sample, skewing the gradation to appear finer than it truly is.

The Balance of Efficiency and Accuracy

The goal is to establish the shortest duration that consistently achieves sieving completeness. This validated time becomes a reliable part of your Standard Operating Procedure (SOP), maximizing lab throughput without sacrificing the integrity of your results.

Making the Right Choice for Your Goal

To ensure your results are accurate and defensible, you must establish a specific, validated shaking time for each type of material you test.

  • If your primary focus is establishing a new lab procedure: Perform the full endpoint test on a representative sample to determine the baseline time required to achieve completeness, then add a small safety factor (e.g., 1-2 minutes).
  • If your primary focus is routine quality control: Use the established, validated time from your SOP but perform an endpoint verification check periodically (e.g., weekly or monthly) or whenever you encounter a new material source.
  • If your primary focus is investigating an unexpected result: Do not simply re-run the test. First, check for sieve overloading, and then perform a full endpoint test on the sample to confirm the original shaking time was adequate.

Following this methodical approach ensures your sieve analysis results are not just fast, but fundamentally correct and defensible.

Summary Table:

Factor Impact on Sieving Time
Material Type Angular particles take longer than smooth, rounded ones.
Moisture Content Even small amounts of moisture can significantly increase time.
Sample Size Overloading a sieve prevents proper separation, invalidating results.
Shaker Type & Condition Shaker energy and wear affect the time to reach the endpoint.

Achieve precise and reliable sieve analysis results with KINTEK.

Accurate gradation data is critical for quality control and material specification. Our range of high-performance sieve shakers and lab consumables is designed to deliver the consistent, vigorous agitation needed to reach sieving completeness efficiently, preventing the risks of under-shaking or particle degradation.

Let our experts help you select the right equipment to validate your procedures and ensure defensible results. Contact KINTEK today to optimize your lab's efficiency and accuracy.

Visual Guide

How long should a sieve shaker be run for fine aggregate? Achieve Accurate Sieving Completeness Visual Guide

Related Products

People Also Ask

Related Products

Laboratory Test Sieves and Vibratory Sieve Shaker Machine

Laboratory Test Sieves and Vibratory Sieve Shaker Machine

Efficiently process powders, granules, and small blocks with a high-frequency vibration sieve. Control vibration frequency, screen continuously or intermittently, and achieve accurate particle size determination, separation, and classification.

Laboratory Vibratory Sieve Shaker Machine for Dry and Wet Three-Dimensional Sieving

Laboratory Vibratory Sieve Shaker Machine for Dry and Wet Three-Dimensional Sieving

KT-VD200 can be used for sieving tasks of dry and wet samples in the laboratory. The screening quality is 20g-3kg. The product is designed with a unique mechanical structure and an electromagnetic vibrating body with a vibration frequency of 3000 times per minute.

Laboratory Vortex Mixer Orbital Shaker Multifunctional Rotation Oscillation Mixer

Laboratory Vortex Mixer Orbital Shaker Multifunctional Rotation Oscillation Mixer

The inching mixer is small in size, mixes quickly and thoroughly, and the liquid is in a vortex shape, which can mix all the test solutions attached to the tube wall.

Vibratory Sieve Shaker Machine Dry Three-Dimensional Vibrating Sieve

Vibratory Sieve Shaker Machine Dry Three-Dimensional Vibrating Sieve

The KT-V200 product focuses on solving common sieving tasks in the laboratory. It is suitable for sieving 20g-3kg dry samples.

Laboratory Vibratory Sieve Shaker Machine Slap Vibrating Sieve

Laboratory Vibratory Sieve Shaker Machine Slap Vibrating Sieve

KT-T200TAP is a slapping and oscillating sieving instrument for laboratory desktop use, with 300 rpm horizontal circular motion and 300 vertical slapping motions to simulate manual sieving to help sample particles pass through better.

Small Lab Rubber Calendering Machine

Small Lab Rubber Calendering Machine

Small lab rubber calendering machine is used for producing thin, continuous sheets of plastic or rubber materials. It is commonly employed in laboratories, small-scale production facilities, and prototyping environments to create films, coatings, and laminates with precise thickness and surface finish.

Lab Internal Rubber Mixer Rubber Kneader Machine for Mixing and Kneading

Lab Internal Rubber Mixer Rubber Kneader Machine for Mixing and Kneading

Lab internal rubber mixer is suitable for mixing, kneading and dispersing various chemical raw materials such as plastics, rubber, synthetic rubber, hot melt adhesive and various low-viscosity materials.

Custom PTFE Teflon Parts Manufacturer for PTFE Mesh F4 Sieve

Custom PTFE Teflon Parts Manufacturer for PTFE Mesh F4 Sieve

PTFE mesh sieve is a specialized test sieve designed for particle analysis in various industries, featuring a non-metallic mesh woven from PTFE filament. This synthetic mesh is ideal for applications where metal contamination is a concern . PTFE sieves are crucial for maintaining the integrity of samples in sensitive environments, ensuring accurate and reliable results in particle size distribution analysis.

Lab Plastic PVC Calender Stretch Film Casting Machine for Film Testing

Lab Plastic PVC Calender Stretch Film Casting Machine for Film Testing

The cast film machine is designed for the molding of polymer cast film products and has multiple processing functions such as casting, extrusion, stretching, and compounding.

Laboratory High Pressure Horizontal Autoclave Steam Sterilizer for Lab Use

Laboratory High Pressure Horizontal Autoclave Steam Sterilizer for Lab Use

The horizontal autoclave steam sterilizer adopts the gravity displacement method to remove the cold air in the inner chamber, so that the inner steam and cold air content is less, and the sterilization is more reliable.

High Energy Planetary Ball Mill Machine for Laboratory Horizontal Tank Type

High Energy Planetary Ball Mill Machine for Laboratory Horizontal Tank Type

The KT-P2000H uses a unique Y-axis planetary trajectory, and utilizes the collision, friction and gravity between the sample and the grinding ball.

Metallographic Specimen Mounting Machine for Laboratory Materials and Analysis

Metallographic Specimen Mounting Machine for Laboratory Materials and Analysis

Precision metallographic mounting machines for labs—automated, versatile, and efficient. Ideal for sample prep in research and quality control. Contact KINTEK today!

Laboratory Sterilizer Lab Autoclave Pulsating Vacuum Desktop Steam Sterilizer

Laboratory Sterilizer Lab Autoclave Pulsating Vacuum Desktop Steam Sterilizer

The pulsating vacuum desktop steam sterilizer is a compact and reliable device used for rapid sterilization of medical, pharmaceutical, and research items.

Single Punch Tablet Press Machine and Mass Production Rotary Tablet Punching Machine for TDP

Single Punch Tablet Press Machine and Mass Production Rotary Tablet Punching Machine for TDP

Rotary tablet punching machine is an automatic rotating and continuous tableting machine. It is mainly used for tablet manufacturing in the pharmaceutical industry, and is also suitable for industrial sectors such as food, chemicals, batteries, electronics, ceramics, etc. to compress granular raw materials into tablets.

Single Punch Electric Tablet Press Machine TDP Tablet Punching Machine

Single Punch Electric Tablet Press Machine TDP Tablet Punching Machine

The electric tablet punching machine is a laboratory equipment designed for pressing various granular and powdery raw materials into discs and other geometric shapes. It is commonly used in pharmaceutical, healthcare products, food, and other industries for small batch production and processing. The machine is compact, lightweight, and easy to operate, making it suitable for use in clinics, schools, laboratories, and research units.

Rubber Vulcanizer Vulcanizing Machine Plate Vulcanizing Press for Lab

Rubber Vulcanizer Vulcanizing Machine Plate Vulcanizing Press for Lab

The Plate vulcanizing press is a kind of equipment used in the production of rubber products, mainly used for the vulcanization of rubber products. Vulcanization is a key step in rubber processing.

Single Punch Electric Tablet Press Machine Laboratory Powder Tablet Punching TDP Tablet Press

Single Punch Electric Tablet Press Machine Laboratory Powder Tablet Punching TDP Tablet Press

The single-punch electric tablet press is a laboratory-scale tablet press suitable for corporate laboratories in pharmaceutical, chemical, food, metallurgical and other industries.

Double Plate Heating Press Mold for Lab

Double Plate Heating Press Mold for Lab

Discover precision in heating with our Double Plate Heating Mold, featuring high-quality steel and uniform temperature control for efficient lab processes. Ideal for various thermal applications.

Desktop Fast Laboratory Autoclave Sterilizer 35L 50L 90L for Lab Use

Desktop Fast Laboratory Autoclave Sterilizer 35L 50L 90L for Lab Use

The desktop fast steam sterilizer is a compact and reliable device used for rapid sterilization of medical, pharmaceutical, and research items. It efficiently sterilizes surgical instruments, glassware, medicines, and resistant materials, making it suitable for various applications.

Desktop Fast High Pressure Laboratory Autoclave Sterilizer 16L 24L for Lab Use

Desktop Fast High Pressure Laboratory Autoclave Sterilizer 16L 24L for Lab Use

The desktop fast steam sterilizer is a compact and reliable device used for rapid sterilization of medical, pharmaceutical, and research items.


Leave Your Message