Knowledge What are furnace tubes made of? 5 Key Materials Explained
Author avatar

Tech Team · Kintek Solution

Updated 2 months ago

What are furnace tubes made of? 5 Key Materials Explained

Furnace tubes are essential components in various industrial and laboratory applications. They are made from a variety of materials to suit different operating conditions and requirements. The choice of material is crucial as it affects the maximum operating temperature and chemical resistance of the furnace.

5 Key Materials Explained

What are furnace tubes made of? 5 Key Materials Explained

Ceramic Materials

  1. Quartz: Quartz tubes are highly resistant to thermal shock and are transparent. This allows for visual inspection of the process. They are suitable for lower temperature applications and are resistant to most acids.

  2. Alumina (Aluminum Oxide): Alumina tubes are known for their high thermal conductivity and resistance to high temperatures. They are commonly used in applications requiring temperatures up to 1800°C and are resistant to many chemicals.

  3. Graphite: Graphite tubes are used in high-temperature applications, typically above 2000°C. They are resistant to most acids and alkalis. However, they are not suitable for oxidizing environments.

  4. Magnesia (Magnesium Oxide): Magnesia tubes offer excellent resistance to high temperatures. They are often used in applications involving alkaline materials.

  5. Zirconia (Zirconium Oxide): Zirconia tubes are highly resistant to thermal shock and can withstand very high temperatures. They are suitable for applications requiring temperatures up to 2400°C.

Metallic Materials

  1. Kanthal: Kanthal alloys are known for their resistance to oxidation at high temperatures. They are commonly used in heating elements.

  2. Nickel Alloys: Nickel-based alloys like Inconel are used in high-temperature applications. They offer excellent mechanical strength and resistance to oxidation and corrosion.

  3. Stainless Steel: Stainless steel tubes are used in applications where moderate temperatures and good resistance to corrosion are required.

  4. Tantalum: Tantalum tubes are used in corrosive environments due to their high resistance to chemical attack.

The selection of the tube material in a furnace is critical. It determines the maximum temperature the furnace can reach and its resistance to chemical reactions with the materials being processed. For example, tungsten or molybdenum tubes are used when dealing with corrosive materials, while quartz or alumina tubes are more common in general laboratory applications. The suitability of the work tube material must be assessed based on the specific requirements of the process, ensuring it can withstand the operating temperature and resist any potential chemical interactions with the sample materials.

Continue exploring, consult our experts

Discover the Precision of KINTEK SOLUTION: Your ultimate partner for advanced furnace tube materials. Our extensive range, including ceramics like quartz, alumina, and zirconia, as well as metals such as Kanthal and Inconel, caters to every specific requirement for your application. Trust in our expertise to select the perfect tube material that withstands extreme temperatures and chemical interactions, enhancing the efficiency and reliability of your laboratory processes. Experience the KINTEK difference – where quality meets innovation, and precision is paramount. Contact us today to elevate your laboratory’s performance!

Related Products

Alumina (Al2O3) Furnace Tube - High Temperature

Alumina (Al2O3) Furnace Tube - High Temperature

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

Multi zone tube furnace

Multi zone tube furnace

Experience precise, efficient thermal testing with our Multi Zone Tube Furnace. Independent heating zones and temperature sensors allow for controlled high-temperature gradient heating fields. Order now for advanced thermal analysis!

Vertical tube furnace

Vertical tube furnace

Elevate your experiments with our Vertical Tube Furnace. Versatile design allows for operation under various environments and heat treatment applications. Order now for precise results!

1400℃ Tube furnace with Alumina tube

1400℃ Tube furnace with Alumina tube

Looking for a tube furnace for high-temperature applications? Our 1400℃ Tube Furnace with Alumina Tube is perfect for research and industrial use.

1700℃ Tube furnace with Alumina tube

1700℃ Tube furnace with Alumina tube

Looking for a high-temperature tube furnace? Check out our 1700℃ Tube Furnace with Alumina Tube. Perfect for research and industrial applications up to 1700C.

High pressure tube furnace

High pressure tube furnace

KT-PTF High Pressure Tube Furnace: Compact split tube furnace with strong positive pressure resistance. Working temp up to 1100°C and pressure up to 15Mpa. Also works under controller atmosphere or high vacuum.

Customer made versatile CVD tube furnace CVD machine

Customer made versatile CVD tube furnace CVD machine

Get your exclusive CVD furnace with KT-CTF16 Customer Made Versatile Furnace. Customizable sliding, rotating, and tilting functions for precise reactions. Order now!

Vacuum tube hot press furnace

Vacuum tube hot press furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Alumina oxide protective tube, also known as high temperature resistant corundum tube or thermocouple protection tube, is a ceramic tube mainly made of alumina (aluminum oxide).

1200℃ Split Tube furnace with quartz tube

1200℃ Split Tube furnace with quartz tube

KT-TF12 split tube furnace: high-purity insulation, embedded heating wire coils, and max. 1200C. Widely used for new materials and chemical vapour deposition.

Vacuum sealed continuous working rotary tube furnace

Vacuum sealed continuous working rotary tube furnace

Experience efficient material processing with our vacuum-sealed rotary tube furnace. Perfect for experiments or industrial production, equipped with optional features for controlled feeding and optimized results. Order now.

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina ceramic crucibles are used in some materials and metal melting tools, and flat-bottomed crucibles are suitable for melting and processing larger batches of materials with better stability and uniformity.

laboratory vacuum tilt rotary tube furnace

laboratory vacuum tilt rotary tube furnace

Discover the versatility of Laboratory Rotary Furnace: Ideal for calcination, drying, sintering, and high-temperature reactions. Adjustable rotating and tilting functions for optimal heating. Suitable for vacuum and controlled atmosphere environments. Learn more now!

Vacuum dental porcelain sintering furnace

Vacuum dental porcelain sintering furnace

Get precise and reliable results with KinTek's Vacuum Porcelain Furnace. Suitable for all porcelain powders, it features hyperbolic ceramic furnace function, voice prompt, and automatic temperature calibration.

Vacuum furnace with ceramic fiber liner

Vacuum furnace with ceramic fiber liner

Vacuum furnace with polycrystalline ceramic fiber insulation liner for excellent heat insulation and uniform temperature field. Choose from 1200℃ or 1700℃ max. working temperature with high vacuum performance and precise temperature control.


Leave Your Message