Knowledge What are the 5 Methods of Infrared Spectroscopy?
Author avatar

Tech Team · Kintek Solution

Updated 2 months ago

What are the 5 Methods of Infrared Spectroscopy?

Infrared spectroscopy uses different methods depending on the type of sample, whether it's solid, liquid, or gas. These methods help get accurate spectra from the samples.

What are the 5 Methods of Infrared Spectroscopy?

What are the 5 Methods of Infrared Spectroscopy?

1. Diffuse Reflection Method

This method is great for powder samples. It scatters infrared light off the sample and collects it with a detector. This method has become more popular with the use of FTIR (Fourier Transform Infrared) spectroscopy.

2. Attenuated Total Reflection (ATR)

ATR lets you measure powder samples without much preparation. It sends infrared light into a crystal at an angle, causing total internal reflection. Even though the light reflects inside the crystal, a little bit interacts with the sample, giving us spectral information.

3. KBr Pellet Method

This classic method mixes the sample with potassium bromide (KBr) and presses it into a pellet under high pressure. The pellet is then analyzed in an IR spectrometer. This method works well for crystalline or powdered materials.

4. Nujol Mull Method

In this method, the sample is mixed with Nujol (a type of mineral oil) to form a suspension. The suspension is then sandwiched between two salt plates and analyzed. This technique is good for non-volatile solids and requires the sample particles to be smaller than the IR radiation wavelength.

5. Solution Techniques

Solid samples can be analyzed by dissolving them in a non-aqueous solvent and placing a drop of this solution on an alkali metal disc. The solvent is then evaporated, leaving a thin film of the solute on the disc, which can be analyzed by IR spectroscopy.

Each method has its benefits and is chosen based on the sample's nature and the information needed. For example, ATR is good for direct analysis without much preparation, while the KBr pellet method is ideal for crystalline materials. The choice of method also depends on how well the sample lets IR radiation through, sometimes needing salts like NaCl or KBr.

Continue exploring, consult our experts

Experience the precision of analysis with KINTEK SOLUTION's comprehensive range of infrared spectroscopy tools. From advanced ATR accessories to reliable KBr pellet presses and Nujol mulls, our innovative solutions cater to every technique, ensuring your laboratory achieves accurate and reliable spectral data for all sample types. Trust KINTEK SOLUTION to be your partner in achieving superior analytical outcomes. Discover our complete inventory of infrared spectroscopy equipment and elevate your research today!

Related Products

lab infrared press mold

lab infrared press mold

Easily release samples from our lab infrared press mold for accurate testing. Ideal for battery, cement, ceramics, and other sample preparation research. Customizable sizes available.

No demolding lab infrared press mold

No demolding lab infrared press mold

Effortlessly test your samples with no demolding required using our lab infrared press mold. Enjoy high transmittance and customizable sizes for your convenience.

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace, a tailored solution for universities and research institutions, with high heating efficiency, user-friendliness, and precise temperature control.

Zinc sulfide (ZnS) window

Zinc sulfide (ZnS) window

Optics Zinc Sulphide (ZnS) Windows have an excellent IR transmission range between 8-14 microns.Excellent mechanical strength and chemical inertness for harsh environments (harder than ZnSe Windows)

Ultra-high temperature graphitization furnace

Ultra-high temperature graphitization furnace

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials.

Horizontal high temperature graphitization furnace

Horizontal high temperature graphitization furnace

Horizontal Graphitization Furnace: This type of furnace is designed with the heating elements placed horizontally, allowing for uniform heating of the sample. It's well-suited for graphitizing large or bulky samples that require precise temperature control and uniformity.

Infrared Silicon / High Resistance Silicon / Single Crystal Silicon Lens

Infrared Silicon / High Resistance Silicon / Single Crystal Silicon Lens

Silicon (Si) is widely regarded as one of the most durable mineral and optical materials for applications in the near-infrared (NIR) range, approximately 1 μm to 6 μm.

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

Infrared transmission coating sapphire sheet / sapphire substrate / sapphire window

Infrared transmission coating sapphire sheet / sapphire substrate / sapphire window

Crafted from sapphire, the substrate boasts unparalleled chemical, optical, and physical properties. Its remarkable resistance to thermal shocks, high temperatures, sand erosion, and water sets it apart.

barium fluoride (BaF2) substrate / window

barium fluoride (BaF2) substrate / window

BaF2 is the fastest scintillator, sought-after for its exceptional properties. Its windows and plates are valuable for VUV and infrared spectroscopy.

Iridium dioxide IrO2 for electrolysis of water

Iridium dioxide IrO2 for electrolysis of water

Iridium dioxide, whose crystal lattice is rutile structure. Iridium dioxide and other rare metal oxides can be used in anode electrodes for industrial electrolysis and microelectrodes for electrophysiological research.

Automatic Lab Warm Isostatic Press (WIP) 20T / 40T / 60T

Automatic Lab Warm Isostatic Press (WIP) 20T / 40T / 60T

Discover the efficiency of Warm Isostatic Press (WIP) for uniform pressure on all surfaces. Ideal for electronics industry parts, WIP ensures cost-effective, high-quality compaction at low temperatures.

High Purity Iridium (Ir) Sputtering Target / Powder / Wire / Block / Granule

High Purity Iridium (Ir) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Iridium (Ir) materials for laboratory use? Look no further! Our expertly produced and tailored materials come in various purities, shapes, and sizes to suit your unique needs. Check out our range of sputtering targets, coatings, powders, and more. Get a quote today!

Continuous graphitization furnace

Continuous graphitization furnace

High-temperature graphitization furnace is a professional equipment for graphitization treatment of carbon materials. It is a key equipment for the production of high-quality graphite products. It has high temperature, high efficiency and uniform heating. It is suitable for various high-temperature treatments and graphitization treatments. It is widely used in metallurgy, electronics, aerospace, etc. industry.

Vacuum Induction Melting Spinning System Arc Melting Furnace

Vacuum Induction Melting Spinning System Arc Melting Furnace

Develop metastable materials with ease using our Vacuum Melt Spinning System. Ideal for research and experimental work with amorphous and microcrystalline materials. Order now for effective results.

Optical ultra-clear glass sheet for laboratory K9 / B270 / BK7

Optical ultra-clear glass sheet for laboratory K9 / B270 / BK7

Optical glass, while sharing many characteristics with other types of glass, is manufactured using specific chemicals that enhance properties crucial for optics applications.

High Purity Indium (In) Sputtering Target / Powder / Wire / Block / Granule

High Purity Indium (In) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Indium materials for laboratory use? Look no further! Our expertise lies in producing tailored Indium materials of varying purities, shapes, and sizes. We offer a wide range of Indium products to suit your unique requirements. Order now at reasonable prices!

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

TGA/DTA thermal analysis vessels are made of aluminum oxide (corundum or aluminum oxide). It can withstand high temperature and is suitable for analyzing materials that require high temperature testing.


Leave Your Message