Knowledge What is the voltage of e-beam evaporation?
Author avatar

Tech Team · Kintek Solution

Updated 1 week ago

What is the voltage of e-beam evaporation?

The voltage of e-beam evaporation typically ranges from 3 to 40 kV, with common setups using voltages around 10 kV to 25 kV. This high voltage is necessary to accelerate the electron beam to high kinetic energy, which is then used to heat and evaporate the source material in a vacuum environment.

Detailed Explanation:

  1. Voltage Range and Purpose: The voltage used in e-beam evaporation is crucial as it determines the kinetic energy of the electrons. This energy is directly proportional to the voltage applied. For instance, at an accelerating voltage of 20–25 kV and a beam current of a few amperes, about 85% of the electron's kinetic energy can be converted into thermal energy, which is essential for heating the material to its evaporation point.

  2. Impact on Material Heating: The high voltage accelerates electrons to a speed where they can deliver a significant amount of energy upon impact with the source material. This energy transfer heats the material, often to temperatures exceeding 3000 °C, causing it to melt or sublimate. The localized heating at the point of electron bombardment ensures minimal contamination from the crucible.

  3. Energy Conversion and Losses: Upon striking the evaporation material, the electrons lose their energy rapidly, converting their kinetic energy into thermal energy. However, some energy is lost through the production of X-rays and secondary electron emission. These losses are a small fraction of the total energy delivered but are important considerations for the overall efficiency and safety of the process.

  4. Operational Flexibility: The voltage can be adjusted depending on the specific requirements of the deposition process, such as the type of material being evaporated and the desired deposition rate. This flexibility allows e-beam evaporation to be used for a wide range of materials, including those with high melting points, making it a versatile technique in thin-film deposition.

In summary, the voltage of e-beam evaporation is a critical parameter that directly influences the energy of the electron beam, the heating of the source material, and the efficiency of the deposition process. Commonly used voltages range from 10 kV to 25 kV, providing sufficient energy to evaporate a wide variety of materials in a controlled vacuum environment.

Explore the precise control and efficiency of e-beam evaporation with KINTEK SOLUTION's cutting-edge equipment. Our advanced systems offer a versatile range of voltages from 3 to 40 kV, tailored for optimal material heating and evaporation. Don't miss out on the opportunity to enhance your thin-film deposition process—contact us today for expert solutions that will elevate your research and manufacturing capabilities.

Related Products

Electron Beam Evaporation Graphite Crucible

Electron Beam Evaporation Graphite Crucible

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible enables precise co-deposition of various materials. Its controlled temperature and water-cooled design ensure pure and efficient thin film deposition.

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.

Vacuum levitation Induction melting furnace

Vacuum levitation Induction melting furnace

Experience precise melting with our Vacuum Levitation Melting Furnace. Ideal for high melting point metals or alloys, with advanced technology for effective smelting. Order now for high-quality results.

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

Electron Gun Beam Crucible

Electron Gun Beam Crucible

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

Optical water bath electrolytic cell

Optical water bath electrolytic cell

Upgrade your electrolytic experiments with our Optical Water Bath. With controllable temperature and excellent corrosion resistance, it's customizable for your specific needs. Discover our complete specifications today.

Ceramic Evaporation Boat Set

Ceramic Evaporation Boat Set

It can be used for vapor deposition of various metals and alloys. Most metals can be evaporated completely without loss. Evaporation baskets are reusable.1

Non consumable vacuum arc furnace Induction melting furnace

Non consumable vacuum arc furnace Induction melting furnace

Explore the benefits of Non-Consumable Vacuum Arc Furnace with high melting point electrodes. Small, easy to operate & eco-friendly. Ideal for laboratory research on refractory metals & carbides.

water bath electrolytic cell - H-type double-layer optical

water bath electrolytic cell - H-type double-layer optical

Double-layer H-type optical water bath electrolytic cells, with excellent corrosion resistance and a wide range of specifications available. Customization options are also available.

Vacuum arc furnace Induction melting furnace

Vacuum arc furnace Induction melting furnace

Discover the power of Vacuum Arc Furnace for melting active & refractory metals. High-speed, remarkable degassing effect, and free of contamination. Learn more now!

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Graphite evaporation crucible

Graphite evaporation crucible

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

Drawing die nano-diamond coating HFCVD Equipment

Drawing die nano-diamond coating HFCVD Equipment

The nano-diamond composite coating drawing die uses cemented carbide (WC-Co) as the substrate, and uses the chemical vapor phase method ( CVD method for short ) to coat the conventional diamond and nano-diamond composite coating on the surface of the inner hole of the mold.

Zinc selenide(ZnSe) window / substrate / optical lens

Zinc selenide(ZnSe) window / substrate / optical lens

Zinc selenide is formed by synthesizing zinc vapor with H2Se gas, resulting in sheet-like deposits on graphite susceptors.

Infrared transmission coating sapphire sheet / sapphire substrate / sapphire window

Infrared transmission coating sapphire sheet / sapphire substrate / sapphire window

Crafted from sapphire, the substrate boasts unparalleled chemical, optical, and physical properties. Its remarkable resistance to thermal shocks, high temperatures, sand erosion, and water sets it apart.

2-5L Rotary Evaporator

2-5L Rotary Evaporator

Efficiently remove low boiling solvents with the KT 2-5L Rotary Evaporator. Perfect for chemical labs in the pharmaceutical, chemical, and biological industries.

Customer made versatile CVD tube furnace CVD machine

Customer made versatile CVD tube furnace CVD machine

Get your exclusive CVD furnace with KT-CTF16 Customer Made Versatile Furnace. Customizable sliding, rotating, and tilting functions for precise reactions. Order now!

10-50L Rotary Evaporator

10-50L Rotary Evaporator

Efficiently separate low boiling solvents with KT Rotary Evaporator. Guaranteed performance with high-grade materials and flexible modular design.

0.5-4L Rotary Evaporator

0.5-4L Rotary Evaporator

Efficiently separate "low boiling" solvents with a 0.5-4L rotary evaporator. Designed with high-grade materials, Telfon+Viton vacuum sealing, and PTFE valves for contamination-free operation.


Leave Your Message