Products Lab Consumables & Materials fine ceramics Alumina (Al2O3) Ceramic Crucible Semicircle Boat with Lid
Alumina (Al2O3) Ceramic Crucible Semicircle Boat  with Lid

fine ceramics

Alumina (Al2O3) Ceramic Crucible Semicircle Boat with Lid

Item Number : KM-C03

Price varies based on specs and customizations


Material
Aluminum oxide
Specification
See the form
Cover
Optional
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Application

Alumina ceramic crucibles are versatile and durable vessels for thermal analysis testing. Made of high-quality alumina ceramic, it has the characteristics of high melting point, strong hardness, good chemical stability, and can withstand extreme temperatures, corrosion and wear. Its smooth surface allows for easy sample removal, while its high thermal conductivity ensures accurate temperature readings during testing. It is a good material for high temperature resistance and chemical corrosion resistance. Alumina sample pans are widely used in thermal analysis such as DTA and DSC to provide consistent and precise results in thermal analysis tests.

Semicircle ceramic crucibles are usually non-porous, which means they do not absorb or retain liquids or gases. This feature helps prevent contamination and ensures accurate measurement or analysis when handling liquids or volatile substances.

  • Material Testing: Alumina ceramic crucibles for precise thermogravimetric analysis.
  • Metallurgical Processes: High-temperature and chemically resistant crucibles for smelting, casting, and refining metal alloys.
  • Environmental Testing: Acid-resistant crucibles for accurate measurement of pollutants and toxins in soil and water samples.
  • Drug Research: Crucibles used to analyze thermal properties of drug molecules, aiding in drug development.
  • Ceramic and Glass Manufacturing: Crucibles designed to withstand extreme temperatures and thermal shock for molten glass and ceramic materials during production.

Detail & Parts

 Semicircle advanced alumina ceramic crucible detail  1 Semicircle advanced alumina ceramic crucible detail 2 Semicircle advanced alumina ceramic crucible detail 3 Semicircle advanced alumina ceramic crucible detail 4 Semicircle advanced alumina ceramic crucible detail 4

Technical specifications

Half round boat crucible (with cover / without cover)

5ml(40x25x17mm) 17ml(55x35x22mm) 42ml(100x40x25mm) 97ml(250x40x19mm) 9ml with lid (100x20x15mm)
7ml(100x20x20mm) 18ml(80x30x16mm) 48ml(100x45x22mm) 110ml(100x65x30mm) 20ml with lid (100x30x20mm)
9ml(65x25x16mm) 20ml(100x30x20mm) 58ml(60x55x40mm) 1025ml(200x130x60mm) 30ml with lid (100x35x18mm)
9ml(100x20x15mm) 30ml(100x35x18mm) 60ml(150x40x20mm) 700ml(150x150x60mm) 40ml with lid (100x40x20mm)
9.5ml(38x34x19mm) 40ml(60x54x24mm) 65ml(100x50x30mm) 800ml(180x120x45mm) 42ml with lid (100x40x25mm)
12ml(40x35x25mm) 40ml(100x40x20mm) 85ml(115x55x28mm) 7ml with lid (100x20x20mm) 65ml with lid (100x50x30mm)
700ml with lid (150x150x60mm)

The crucibles we show are available in different sizes and custom sizes are available on request.

Advantages

  • High temperature resistance: long-term use at 1600°C, short-term use at 1800°C (Al2O3≥99%), suitable for melting, sintering, annealing and other occasions.
  • Low Thermal Conductivity: Minimizes thermal shock for safe handling even when very hot.
  • Superior Durability: Withstands multiple heating and cooling cycles without cracking or deforming.
  • Easy to clean and cost-effective.
  • Broad Material Compatibility: Compatible with metals, salts, organics and a wide variety of laboratory chemicals.
  • Non-toxic, safe for laboratory use.

FAQ

What are the main applications of fine ceramics?

Fine ceramics are used in various applications including tableware, cookware, wall tiles, and sanitaryware. They are also used in structural ceramics like bricks and roof tiles, refractories such as furnace and kiln insulation, metal crucibles, and in advanced technical ceramics for high-temperature applications.

What are thermal evaporation sources?

Thermal evaporation sources are devices used in thermal evaporation systems to deposit thin films onto substrates. They work by heating a material (evaporant) to high temperatures, causing it to evaporate and then condense onto a substrate, forming a thin film.

What are the common applications of alumina crucibles?

Alumina crucibles have diverse applications in industries such as metallurgy, ceramics, chemistry, and materials research. They are commonly used for high-temperature processes, including melting, calcination, and sintering of metals, alloys, and ceramics. Alumina crucibles are also utilized in the production of catalysts, glass, and advanced materials. In laboratories, they are used for sample preparation, heating, and chemical reactions. Additionally, alumina crucibles find applications in thermal analysis techniques such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

What are the advantages of using ceramic crucibles?

Ceramic crucibles offer several advantages over other types of crucibles. Firstly, they have excellent thermal resistance, allowing them to withstand high temperatures without cracking or warping. Ceramic crucibles are also chemically inert, meaning they do not react with most substances, making them suitable for a wide range of applications. They are also non-porous, ensuring that there is no contamination or absorption of materials during heating or melting processes. Ceramic crucibles are highly durable and long-lasting, making them a reliable choice for repeated use. Additionally, ceramic crucibles can be manufactured in various shapes and sizes to accommodate different experimental or industrial requirements.

What are the main types of fine ceramics?

The main types of fine ceramics include alumina (Al2O3), zirconia, boron nitride (BN), silicon carbide (SiC), and silicon nitride (SiN). Each type has unique properties suitable for different applications.

What are the main types of thermal evaporation sources?

The main types of thermal evaporation sources include resistive evaporation sources, electron-beam evaporation sources, and flash evaporation sources. Each type uses different methods to heat the evaporant, such as resistive heating, electron beam heating, or direct contact with a hot surface.

What are the advantages of using alumina crucibles?

Alumina crucibles offer several advantages in high-temperature applications. Firstly, they have excellent thermal shock resistance, allowing them to withstand rapid heating and cooling without cracking. Alumina crucibles also have high chemical resistance, making them suitable for use with acids, bases, and other corrosive materials. They have low electrical conductivity, which is beneficial for preventing electrical interference in certain applications. Alumina crucibles are also inert and do not react with most substances, ensuring the purity of the materials being processed. Additionally, they have a long lifespan and can withstand repeated use at high temperatures.

What are some common uses of ceramic crucibles?

Ceramic crucibles have a wide range of applications across various industries. They are commonly used in laboratories for heating, melting, or calcining substances during experiments or sample preparations. Ceramic crucibles are also widely used in metal casting and alloy production processes, as they can withstand the high temperatures required for melting metals. They are used in the production of ceramics, glass, and semiconductors, where precise temperature control and chemical resistance are crucial. Additionally, ceramic crucibles find applications in the pharmaceutical and chemical industries, as well as in research and development, where they are used for analyzing and testing materials under extreme temperature conditions.

What is the principle behind fine ceramics?

Fine ceramics are made through a process involving high-temperature sintering of raw materials to form dense, strong, and durable materials. The specific properties of each type of ceramic are determined by the chemical composition and microstructure achieved during the sintering process.

How do thermal evaporation sources work?

Thermal evaporation sources work by passing electrical current through a resistive material, which heats up to high temperatures. This heat is transferred to the evaporant, causing it to melt and vaporize. The vapor then travels through a vacuum chamber and condenses onto a substrate, forming a thin film.

How should alumina crucibles be handled and maintained?

Proper handling and maintenance of alumina crucibles are crucial to ensure their longevity and optimal performance. When handling, it is important to avoid dropping or impacting the crucibles to prevent cracking or damage. They should be stored in a clean and dry environment to avoid contamination. Regular cleaning of the crucibles is necessary to remove any residual materials or impurities. This can be done using a soft brush, mild detergent, or solvents suitable for alumina. It is recommended to preheat the crucibles before use, especially when subjected to rapid temperature changes, to prevent thermal shock. Crucibles should be inspected for cracks, erosion, or other damage, and if any issues are found, they should be replaced to maintain the quality of the materials being processed. Following the manufacturer's guidelines for maintenance and handling is essential.

How can I choose the right ceramic crucible for my application?

When choosing a ceramic crucible for a specific application, several factors should be considered. Firstly, the temperature range required for the application should be determined, as different types of ceramics have varying maximum temperature limits. It is important to select a crucible that can withstand the expected temperature without deformation or damage. Secondly, the size and capacity of the crucible should be considered to ensure it can accommodate the required quantity of material. The shape and design of the crucible should also be compatible with the experimental setup or industrial process. Additionally, the chemical compatibility of the crucible with the substances being used should be assessed to ensure there will be no adverse reactions or contamination. Consulting with suppliers or experts in the field can help in selecting the most suitable ceramic crucible for specific applications.

What are the advantages of using fine ceramics?

Fine ceramics offer several advantages including high temperature resistance, excellent electrical insulation, high hardness, wear resistance, chemical resistance, and low thermal expansion. These properties make them ideal for use in extreme environments and for specialized applications.

What are the advantages of using thermal evaporation sources?

The advantages of thermal evaporation sources include high deposition rates, good directionality, excellent uniformity, and compatibility with various materials. They are also relatively simple and affordable, making them suitable for a wide range of applications in thin film deposition.

What are the common materials used for evaporating crucibles?

Evaporating crucibles are commonly made from materials such as tungsten, tantalum, molybdenum, graphite, or ceramic compounds. These materials have high melting points and good thermal conductivity, making them suitable for the high-temperature conditions required during evaporation. The choice of crucible material depends on factors such as the evaporant material, desired film properties, and process parameters.

How should ceramic crucibles be handled and maintained?

Proper handling and maintenance of ceramic crucibles are essential to ensure their longevity and performance. When handling ceramic crucibles, it is important to avoid dropping them or subjecting them to sudden temperature changes, as this can cause thermal shock and result in cracking or breakage. It is advisable to use appropriate tools, such as tongs or gloves, for handling hot crucibles. After use, ceramic crucibles should be allowed to cool down gradually before cleaning. Cleaning can be done using warm water and mild detergent, followed by rinsing and drying thoroughly. It is important to avoid using harsh chemicals or abrasive materials that can damage the ceramic surface. Regular inspection should be carried out to check for any signs of wear, cracks, or discoloration, and damaged crucibles should be replaced to ensure safety and accuracy in experiments or industrial processes.

What applications are thermal evaporation sources used for?

Thermal evaporation sources are used in various applications such as the production of optical coatings, semiconductor devices, and various types of thin films. They are particularly useful in industries that require precise control over the deposition of materials onto substrates.

What are the advantages of using evaporating crucibles?

Evaporating crucibles offer several advantages in thin film deposition processes. They provide a controlled environment for the evaporation of materials, allowing for precise control over film thickness and uniformity. Crucibles can withstand high temperatures and provide efficient heat transfer, ensuring consistent evaporation rates. They are available in various sizes and shapes to accommodate different evaporation systems and substrate configurations. Evaporating crucibles also allow for the deposition of a wide range of materials, including metals, semiconductors, and ceramics. They can be easily loaded and unloaded, facilitating quick material changes or process adjustments. Overall, evaporating crucibles are essential tools in thin film deposition techniques, offering versatility, reliability, and reproducibility.

How should evaporating crucibles be handled and maintained?

Evaporating crucibles should be handled and maintained with care to ensure their longevity and performance. Crucibles should be cleaned thoroughly before each use to remove any residual material from previous depositions. Avoid using abrasive materials that could damage the crucible's surface. During loading and unloading, handle crucibles with clean gloves or specialized tools to prevent contamination. When not in use, store crucibles in a dry and clean environment to avoid corrosion or degradation. Regular inspection of crucibles for cracks, defects, or signs of wear is important to prevent unexpected failures during the evaporation process. Follow the manufacturer's recommendations for any specific maintenance procedures, such as annealing or surface treatment, to prolong the crucible's lifespan.
View more faqs for this product

4.9

out of

5

Fantastic quality and value. I've used these crucibles in high-temperature experiments and they've held up perfectly.

Jackson Kelly

4.9

out of

5

These crucibles are the best! They're durable, easy to clean, and perfect for my lab work.

Isabella Garcia

4.9

out of

5

I'm very satisfied with these crucibles. They're well-made and have met all my expectations.

Amelia White

4.9

out of

5

These crucibles are a great value for the price. They're sturdy and have held up well in my experiments.

Liam Brown

4.9

out of

5

I highly recommend these crucibles. They're high-quality and perfect for my lab's needs.

Zoe Smith

4.9

out of

5

These crucibles are simply amazing! They're durable, easy to use, and deliver accurate results.

Oliver Jones

4.9

out of

5

I'm thrilled with these crucibles. They're a great addition to my lab equipment.

Sophia Williams

4.9

out of

5

These crucibles are a lifesaver! They've made my lab work so much easier.

Lucas Miller

4.9

out of

5

I'm very impressed with these crucibles. They're well-made and perform exceptionally well.

Mia Davis

4.9

out of

5

These crucibles are a game-changer for my lab. They're durable, accurate, and easy to clean.

Ethan Garcia

4.9

out of

5

I'm incredibly satisfied with these crucibles. They're a great investment for any lab.

Harper White

4.9

out of

5

These crucibles are top-notch! They're a must-have for any lab.

Ava Brown

4.9

out of

5

I'm blown away by these crucibles. They're the perfect combination of quality and affordability.

Daniel Jones

4.9

out of

5

These crucibles are an absolute game-changer. They've made my lab work so much more efficient.

Isabella Garcia

4.9

out of

5

I'm incredibly happy with these crucibles. They're a great addition to my lab equipment.

Liam Brown

PDF - Alumina (Al2O3) Ceramic Crucible Semicircle Boat with Lid

Download

Catalog of Fine Ceramics

Download

Catalog of Alumina Crucible

Download

Catalog of Ceramic Crucible

Download

Catalog of Fine Ceramics

Download

Catalog of Thermal Evaporation Sources

Download

Catalog of Evaporation Crucible

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Aluminized ceramic evaporation boat

Aluminized ceramic evaporation boat

Vessel for depositing thin films; has an aluminum-coated ceramic body for improved thermal efficiency and chemical resistance. making it suitable for various applications.

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina ceramic crucibles are used in some materials and metal melting tools, and flat-bottomed crucibles are suitable for melting and processing larger batches of materials with better stability and uniformity.

Alumina (Al2O3) Crucible With Lid Cylindrical Laboratory Crucible

Alumina (Al2O3) Crucible With Lid Cylindrical Laboratory Crucible

Cylindrical Crucibles Cylindrical crucibles are one of the most common crucible shapes, suitable for melting and processing a wide variety of materials, and are easy to handle and clean.

Ceramic Evaporation Boat Set

Ceramic Evaporation Boat Set

It can be used for vapor deposition of various metals and alloys. Most metals can be evaporated completely without loss. Evaporation baskets are reusable.1

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

TGA/DTA thermal analysis vessels are made of aluminum oxide (corundum or aluminum oxide). It can withstand high temperature and is suitable for analyzing materials that require high temperature testing.

Alumina (Al2O3) Ceramic Rod-Insulated

Alumina (Al2O3) Ceramic Rod-Insulated

Insulated alumina rod is a fine ceramic material. Alumina rods have excellent electrical insulating properties, high chemical resistance and low thermal expansion.

Alumina (Al2O3) Furnace Tube - High Temperature

Alumina (Al2O3) Furnace Tube - High Temperature

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

Graphite evaporation crucible

Graphite evaporation crucible

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Alumina oxide protective tube, also known as high temperature resistant corundum tube or thermocouple protection tube, is a ceramic tube mainly made of alumina (aluminum oxide).

Evaporation Crucible for Organic Matter

Evaporation Crucible for Organic Matter

An evaporation crucible for organic matter, referred to as an evaporation crucible, is a container for evaporating organic solvents in a laboratory environment.

Alumina/zirconia Grinding Jar With Balls

Alumina/zirconia Grinding Jar With Balls

Grind to perfection with alumina/zirconia grinding jars and balls. Available in volume sizes from 50ml to 2500ml, compatible with various mills.

PTFE acid and alkali resistant scoops/chemical powder material scoops

PTFE acid and alkali resistant scoops/chemical powder material scoops

Known for its excellent thermal stability, chemical resistance and electrical insulating properties, PTFE is a versatile thermoplastic material.

Alumina Ceramic Saggar - Fine Corundum

Alumina Ceramic Saggar - Fine Corundum

Alumina sagger products have the characteristics of high temperature resistance, good thermal shock stability, small expansion coefficient, anti-stripping, and good anti-powdering performance.

Electron Gun Beam Crucible

Electron Gun Beam Crucible

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

Carbon Graphite Boat -Laboratory Tube Furnace with Cover

Carbon Graphite Boat -Laboratory Tube Furnace with Cover

Covered Carbon Graphite Boat Laboratory Tube Furnaces are specialized vessels or vessels made of graphite material designed to withstand extreme high temperatures and chemically aggressive environments.

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible enables precise co-deposition of various materials. Its controlled temperature and water-cooled design ensure pure and efficient thin film deposition.

PTFE tweezers

PTFE tweezers

PTFE tweezers inherit the excellent physical and chemical properties of PTFE, such as high temperature resistance, cold resistance, acid and alkali resistance, and corrosion resistance to most organic solvents.

Aluminium Oxide (Al2O3) Ceramic Washer - Wear-Resistant

Aluminium Oxide (Al2O3) Ceramic Washer - Wear-Resistant

Alumina wear-resistant ceramic washer are used for heat dissipation, which can replace aluminum heat sinks, with high temperature resistance and high thermal conductivity.

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible (BN Crucible)

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible (BN Crucible)

High-purity and smooth conductive boron nitride crucible for electron beam evaporation coating, with high temperature and thermal cycling performance.

PTFE centrifuge tube rack

PTFE centrifuge tube rack

The precision-made PTFE test tube racks are completely inert and, due to the high temperature properties of PTFE, these test tube racks can be sterilized (autoclaved) without any problems.

Electron Beam Evaporation Coating / Gold Plating / Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating / Gold Plating / Tungsten Crucible / Molybdenum Crucible

These crucibles act as containers for the gold material evaporated by the electron evaporation beam while precisely directing the electron beam for precise deposition.

Laboratory ITO/FTO conductive glass cleaning flower basket

Laboratory ITO/FTO conductive glass cleaning flower basket

PTFE cleaning racks are mainly made of tetrafluoroethylene. PTFE, known as the "King of Plastics", is a polymer compound made of tetrafluoroethylene.

Electron Beam Evaporation Graphite Crucible

Electron Beam Evaporation Graphite Crucible

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.

PTFE cleaning rack

PTFE cleaning rack

PTFE cleaning racks are mainly made of tetrafluoroethylene. PTFE, known as the "King of Plastics", is a polymer compound made of tetrafluoroethylene.