Knowledge What is physical vapor deposition process?
Author avatar

Tech Team · Kintek Solution

Updated 1 week ago

What is physical vapor deposition process?

Physical vapor deposition (PVD) is a process used to deposit thin films of materials onto a substrate through the transition of materials from their condensed to vapor phases. This process involves physically depositing atoms, ions, or molecules of a coating species onto a substrate, typically resulting in coatings of pure metals, metallic alloys, and ceramics with a thickness usually in the range of 1 to 10µm.

The PVD process can be achieved through various thin film deposition techniques, all of which have in common that the atoms are removed from a source by physical means. One such technique is sputter deposition, where the atoms are released from a solid or liquid source through momentum exchange. There are three main types of PVD undertaken in a chamber containing a controlled atmosphere at reduced pressure (0.1 to 1 N/m²), and these techniques can be used for the direct deposition of a material or for 'reactive' use in which chemical reaction occurs in the vapor/plasma phase between atoms of the coating material and 'reactive' gases.

In all PVD processes, the material from which the thin film will be produced is initially in solid form and normally located somewhere in the process chamber, e.g. at the target in sputtering. Various methods are used to vaporize the material (for example, using a short, powerful laser pulse, with an arc, or by ion or electron bombardment) which then condenses in the form of a thin film on the substrate surface. The physical properties of the deposited material are dependent on the vapor pressure of the precursor materials.

In VLSI fabrication, the most widely-used method of accomplishing PVD of thin films is by sputtering. The PVD process by sputtering involves the following sequence of steps: 1) the material to be deposited is converted into vapor by physical means; 2) the vapor is transported across a region of low pressure from its source to the substrate; and 3) the vapor undergoes condensation on the substrate to form the thin film.

Unleash the potential of advanced materials with KINTEK SOLUTION's cutting-edge Physical Vapor Deposition (PVD) technology! Experience the precision and efficiency of sputter deposition and other PVD methods, engineered for purity and performance. Elevate your thin film applications to new heights with our robust range of deposition solutions. Explore our extensive inventory and discover how KINTEK SOLUTION can drive your next innovation forward! Shop today and transform your materials deposition process.

Related Products

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

Drawing die nano-diamond coating HFCVD Equipment

Drawing die nano-diamond coating HFCVD Equipment

The nano-diamond composite coating drawing die uses cemented carbide (WC-Co) as the substrate, and uses the chemical vapor phase method ( CVD method for short ) to coat the conventional diamond and nano-diamond composite coating on the surface of the inner hole of the mold.

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Learn about Cylindrical Resonator MPCVD Machine, the microwave plasma chemical vapor deposition method used for growing diamond gemstones and films in the jewelry and semi-conductor industries. Discover its cost-effective advantages over traditional HPHT methods.

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Introducing our inclined rotary PECVD furnace for precise thin film deposition. Enjoy automatic matching source, PID programmable temperature control, and high accuracy MFC mass flowmeter control. Built-in safety features for peace of mind.

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Get high-quality diamond films with our Bell-jar Resonator MPCVD machine designed for lab and diamond growth. Discover how Microwave Plasma Chemical Vapor Deposition works for growing diamonds using carbon gas and plasma.

Ceramic Evaporation Boat Set

Ceramic Evaporation Boat Set

It can be used for vapor deposition of various metals and alloys. Most metals can be evaporated completely without loss. Evaporation baskets are reusable.1

CVD Diamond coating

CVD Diamond coating

CVD Diamond Coating: Superior Thermal Conductivity, Crystal Quality, and Adhesion for Cutting Tools, Friction, and Acoustic Applications

Graphite evaporation crucible

Graphite evaporation crucible

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

915MHz MPCVD Diamond Machine

915MHz MPCVD Diamond Machine

915MHz MPCVD Diamond Machine and its multi-crystal effective growth, the maximum area can reach 8 inches, the maximum effective growth area of single crystal can reach 5 inches. This equipment is mainly used for the production of large-size polycrystalline diamond films, the growth of long single crystal diamonds, the low-temperature growth of high-quality graphene, and other materials that require energy provided by microwave plasma for growth.

Vacuum induction melting furnace Arc Melting Furnace

Vacuum induction melting furnace Arc Melting Furnace

Get precise alloy composition with our Vacuum Induction Melting Furnace. Ideal for aerospace, nuclear energy, and electronic industries. Order now for effective smelting and casting of metals and alloys.

High Purity Vanadium (V) Sputtering Target / Powder / Wire / Block / Granule

High Purity Vanadium (V) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Vanadium (V) materials for your laboratory? We offer a wide range of customizable options to fit your unique needs, including sputtering targets, powders, and more. Contact us today for competitive pricing.

Customer made versatile CVD tube furnace CVD machine

Customer made versatile CVD tube furnace CVD machine

Get your exclusive CVD furnace with KT-CTF16 Customer Made Versatile Furnace. Customizable sliding, rotating, and tilting functions for precise reactions. Order now!

CVD boron doped diamond

CVD boron doped diamond

CVD boron-doped diamond: A versatile material enabling tailored electrical conductivity, optical transparency, and exceptional thermal properties for applications in electronics, optics, sensing, and quantum technologies.

Vacuum tube hot press furnace

Vacuum tube hot press furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.


Leave Your Message