Spark plasma sintering (SPS) is a technique that uses pressure to facilitate the sintering process.
The pressure used in SPS can vary, but it generally operates under ultra-high pressure, up to 8 GPa (gigapascals).
This high pressure helps in the new arrangement of grains, reducing diffusion during the sintering process.
It also increases material density and eliminates porosity.
As a result, the temperature and sintering duration are reduced.
SPS is a relatively new technique that offers several advantages over conventional sintering methods.
It takes only a few minutes to complete the sintering process, compared to hours or even days required for conventional sintering.
This high sintering rate is possible due to the high heating rates that can be easily attained through internal heating of the sample.
The heating rates in SPS can exceed 300°C/min, allowing for rapid attainment of the desired temperature.
In SPS, the simultaneous application of temperature and pressure leads to high densification.
This results in a dense compact at sintering temperatures lower by 200 to 250°C than in conventional sintering.
SPS also allows for the sintering of nano-sized powders without considerable grain growth.
This makes it suitable for preparing nano-structured ceramics or nano-composites with excellent mechanical properties.
The pressure for SPS is applied through uniaxial pressure and high-intensity, low-voltage, pulsed current.
The pulsed direct current passes through the powder and generates a plasma discharge between the particles, causing rapid heating and sintering.
The SPS process typically takes place in a vacuum or controlled atmosphere environment to prevent oxidation and ensure purity.
Overall, SPS offers a faster sintering rate, precise control over temperature and pressure, and the ability to fabricate materials with unique microstructures and properties.
It is commonly used in materials science, nanotechnology, and engineering for the fabrication of ceramic, metallic, and composite materials.
Continue exploring, consult our experts
Unlock the potential of advanced materials with KINTEK's state-of-the-art laboratory equipment!
Our cutting-edge spark plasma sintering (SPS) technology allows for pressure up to 8 GPa, promoting efficient grain rearrangement, enhanced material density, and reduced porosity.
Experience shorter processing times compared to traditional sintering methods.
Don’t miss out on the advantages of SPS – contact KINTEK today for all your laboratory equipment needs!