Knowledge What are the limitations of ATR FTIR? (3 Key Points)
Author avatar

Tech Team · Kintek Solution

Updated 3 months ago

What are the limitations of ATR FTIR? (3 Key Points)

ATR FTIR, or Attenuated Total Reflection Fourier Transform Infrared Spectroscopy, is a powerful tool for analyzing the surface of materials. However, it does come with some limitations that users need to be aware of.

What are the limitations of ATR FTIR? (3 Key Points)

What are the limitations of ATR FTIR? (3 Key Points)

1. Wavenumber Dependency of Absorption Peak Intensity

In ATR FTIR, the effective pathlength is dependent on the wavelength. This means that the relative band intensities can change, leading to variations in the measured spectra. These changes are not due to changes in the sample's composition but rather to the spectral acquisition method itself. This requires careful interpretation of the data and sometimes necessitates additional corrections or considerations that are not required in other forms of FTIR spectroscopy.

2. Peak Deformation Due to Anomalous Dispersion

The ATR method can cause peak deformation, particularly for inorganic and other high-refractive-index samples. This deformation manifests as a shift towards a first-order differential form of the absorption peaks. This effect is due to the anomalous dispersion of the refractive index, which can alter the shape and position of spectral features, complicating the interpretation of the spectra and potentially leading to misidentification of chemical species or functional groups.

3. Qualitative Nature

ATR FTIR is predominantly a qualitative analysis technique. While it can provide detailed information about the surface composition and structure of materials, it is not typically used for quantitative analysis. This limitation restricts its applicability in scenarios where precise quantification of components is required, such as in some pharmaceutical or forensic applications.

These limitations highlight the importance of understanding the underlying principles and potential pitfalls of ATR FTIR when interpreting results. Despite these challenges, ATR FTIR remains a valuable tool for surface analysis, particularly in organic chemistry and materials science, due to its ability to directly analyze powder samples without the need for complex sample preparation.

Continue exploring, consult our experts

Discover cutting-edge solutions for overcoming the limitations of ATR FTIR with KINTEK SOLUTION's precision instruments. Our advanced technology is designed to enhance the accuracy of your spectral analysis, ensuring reliable results for both qualitative and quantitative applications. Upgrade your lab with KINTEK SOLUTION – where innovation meets efficiency in surface analysis. Get started today and unlock the full potential of your research!

Related Products

XRD sample holder / X-ray diffractometer powder slide

XRD sample holder / X-ray diffractometer powder slide

X-ray powder diffraction (XRD) is a rapid technique for identifying crystalline materials and determining their unit cell dimensions.

barium fluoride (BaF2) substrate / window

barium fluoride (BaF2) substrate / window

BaF2 is the fastest scintillator, sought-after for its exceptional properties. Its windows and plates are valuable for VUV and infrared spectroscopy.

Infrared Silicon / High Resistance Silicon / Single Crystal Silicon Lens

Infrared Silicon / High Resistance Silicon / Single Crystal Silicon Lens

Silicon (Si) is widely regarded as one of the most durable mineral and optical materials for applications in the near-infrared (NIR) range, approximately 1 μm to 6 μm.

Infrared transmission coating sapphire sheet / sapphire substrate / sapphire window

Infrared transmission coating sapphire sheet / sapphire substrate / sapphire window

Crafted from sapphire, the substrate boasts unparalleled chemical, optical, and physical properties. Its remarkable resistance to thermal shocks, high temperatures, sand erosion, and water sets it apart.

CaF2 substrate / window / lens

CaF2 substrate / window / lens

A CaF2 window is an optical window made of crystalline calcium fluoride. These windows are versatile, environmentally stable and resistant to laser damage, and they exhibit a high, stable transmission from 200 nm to about 7 μm.

Ultra-high temperature graphitization furnace

Ultra-high temperature graphitization furnace

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials.

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace, a tailored solution for universities and research institutions, with high heating efficiency, user-friendliness, and precise temperature control.

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

TGA/DTA thermal analysis vessels are made of aluminum oxide (corundum or aluminum oxide). It can withstand high temperature and is suitable for analyzing materials that require high temperature testing.

Zinc sulfide (ZnS) window

Zinc sulfide (ZnS) window

Optics Zinc Sulphide (ZnS) Windows have an excellent IR transmission range between 8-14 microns.Excellent mechanical strength and chemical inertness for harsh environments (harder than ZnSe Windows)

MgF2 magnesium fluoride crystal substrate / window

MgF2 magnesium fluoride crystal substrate / window

Magnesium fluoride (MgF2) is a tetragonal crystal that exhibits anisotropy, making it imperative to treat it as a single crystal when engaging in precision imaging and signal transmission.

1400℃ Controlled atmosphere furnace

1400℃ Controlled atmosphere furnace

Achieve precise heat treatment with KT-14A controlled atmosphere furnace. Vacuum sealed with a smart controller, it's ideal for lab and industrial use up to 1400℃.

laboratory vacuum tilt rotary tube furnace

laboratory vacuum tilt rotary tube furnace

Discover the versatility of Laboratory Rotary Furnace: Ideal for calcination, drying, sintering, and high-temperature reactions. Adjustable rotating and tilting functions for optimal heating. Suitable for vacuum and controlled atmosphere environments. Learn more now!

High pressure tube furnace

High pressure tube furnace

KT-PTF High Pressure Tube Furnace: Compact split tube furnace with strong positive pressure resistance. Working temp up to 1100°C and pressure up to 15Mpa. Also works under controller atmosphere or high vacuum.

Automatic Lab XRF & KBR Pellet Press 30T / 40T / 60T

Automatic Lab XRF & KBR Pellet Press 30T / 40T / 60T

Fast and easy xrf sample pellet preparation with KinTek Automatic Lab Pellet Press. Versatile and accurate results for X-ray fluorescence analysis.

Hydrogen atmosphere furnace

Hydrogen atmosphere furnace

KT-AH Hydrogen atmosphere furnace - induction gas furnace for sintering/annealing with built-in safety features, dual housing design, and energy-saving efficiency. Ideal for lab and industrial use.

1700℃ Controlled atmosphere furnace

1700℃ Controlled atmosphere furnace

KT-17A Controlled atmosphere furnace: 1700℃ heating, vacuum sealing technology, PID temperature control, and versatile TFT smart touch screen controller for laboratory and industrial use.

1200℃ Controlled atmosphere furnace

1200℃ Controlled atmosphere furnace

Discover our KT-12A Pro Controlled atmosphere furnace - high precision, heavy duty vacuum chamber, versatile smart touch screen controller, and excellent temperature uniformity up to 1200C. Ideal for both laboratory and industrial application.

High Thermal Conductivity Film Graphitization Furnace

High Thermal Conductivity Film Graphitization Furnace

The high thermal conductivity film graphitization furnace has uniform temperature, low energy consumption and can operate continuously.

Continuous graphitization furnace

Continuous graphitization furnace

High-temperature graphitization furnace is a professional equipment for graphitization treatment of carbon materials. It is a key equipment for the production of high-quality graphite products. It has high temperature, high efficiency and uniform heating. It is suitable for various high-temperature treatments and graphitization treatments. It is widely used in metallurgy, electronics, aerospace, etc. industry.


Leave Your Message