Knowledge What metals Cannot be brazed?
Author avatar

Tech Team · Kintek Solution

Updated 1 week ago

What metals Cannot be brazed?

Metals that cannot be brazed include titanium due to its rapid oxidation and the formation of stubborn titanium oxides that cannot be reduced in a furnace environment, making the surface impossible to braze. Additionally, certain aluminum alloys, particularly those in the 2xxx (Al-Cu) and 7xxx (Al-Zn-Mg) series, are difficult to braze due to their low melting points and the formation of stable aluminum oxide layers that prevent the wetting of filler metals.

Titanium: Titanium oxidizes rapidly when heated, forming a layer of titanium oxides that are extremely resistant to reduction. This oxide layer prevents the bonding of brazing filler metals, rendering the surface unsuitable for brazing. Attempting to braze titanium in a gaseous atmosphere is particularly problematic due to the continuous formation of this oxide layer.

Aluminum Alloys: Aluminum is highly oxidizable, forming a stable aluminum oxide (Al2O3) layer on its surface. This oxide layer is not wetted by filler metals, necessitating the suppression of this layer before brazing. Certain aluminum alloys, especially those in the 2xxx and 7xxx series, are categorized as precipitation-hardened alloys and are difficult to braze due to their low melting points and the challenges associated with suppressing the oxide layer. The suppression of aluminum oxide can be achieved chemically or mechanically, but the process is complex and requires precise control of brazing conditions.

Reactive Elements in Alloys: Alloys containing reactive elements like aluminum and titanium pose brazing challenges due to the formation of high-temperature oxides that impede the flow of brazing filler metals. This is particularly true for nickel-base superalloys, where the severity of the problem varies with alloy composition. These materials often require high vacuum levels and specialized techniques such as brush nickel plating, chemical etching, or the use of aggressive braze filler metals with self-fluxing characteristics to improve brazeability.

Off-gassing of Metallic Elements: Metals containing cadmium, zinc, or lead can release gases when heated to brazing temperatures, potentially contaminating the brazing furnace and increasing the void content of the brazed joint. This off-gassing is a significant concern, especially in vacuum furnaces, and can affect the integrity of the brazed joints.

In summary, metals and alloys that form stable oxide layers, have low melting points, or contain elements that off-gas at brazing temperatures are generally not suitable for brazing without specialized techniques and conditions. Prevention of oxide formation and careful selection of brazing methods and conditions are crucial for successful brazing of these materials.

Discover the art of precision brazeability with KINTEK SOLUTION. Our specialized equipment and expert solutions ensure seamless joining of even the most challenging metals, such as titanium and high-alloyed aluminum. Overcome the obstacles of oxidation and off-gassing with our innovative technologies designed for the exacting demands of your brazing projects. Trust KINTEK SOLUTION for the advanced solutions you need to achieve flawless and robust joints every time. Contact us today and elevate your brazing capabilities to new heights!

Related Products

Vacuum brazing furnace

Vacuum brazing furnace

A vacuum brazing furnace is a type of industrial furnace used for brazing, a metalworking process that joins two pieces of metal using a filler metal that melts at a lower temperature than the base metals. Vacuum brazing furnaces are typically used for high-quality applications where a strong, clean joint is required.

Alumina (Al2O3) Furnace Tube - High Temperature

Alumina (Al2O3) Furnace Tube - High Temperature

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

High-purity titanium foil / titanium sheet

High-purity titanium foil / titanium sheet

Titanium is chemically stable, with a density of 4.51g/cm3, which is higher than aluminum and lower than steel, copper, and nickel, but its specific strength ranks first among metals.

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Alumina oxide protective tube, also known as high temperature resistant corundum tube or thermocouple protection tube, is a ceramic tube mainly made of alumina (aluminum oxide).

High Purity Aluminum Oxide (Al2O3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Aluminum Oxide (Al2O3) Sputtering Target / Powder / Wire / Block / Granule

Looking for Aluminum Oxide materials for your lab? We offer high-quality Al2O3 products at affordable prices with customizable shapes and sizes to meet your specific needs. Find sputtering targets, coating materials, powders, and more.

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

Aluminium Oxide (Al2O3) Ceramic Washer - Wear-Resistant

Aluminium Oxide (Al2O3) Ceramic Washer - Wear-Resistant

Alumina wear-resistant ceramic washer are used for heat dissipation, which can replace aluminum heat sinks, with high temperature resistance and high thermal conductivity.

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

Aluminum Nitride (AlN) Ceramic Sheet

Aluminum Nitride (AlN) Ceramic Sheet

Aluminum nitride (AlN) has the characteristics of good compatibility with silicon. It is not only used as a sintering aid or reinforcing phase for structural ceramics, but its performance far exceeds that of alumina.

Boron Nitride (BN) Ceramic Plate

Boron Nitride (BN) Ceramic Plate

Boron nitride (BN) ceramic plates do not use aluminum water to wet, and can provide comprehensive protection for the surface of materials that directly contact molten aluminum, magnesium, zinc alloys and their slag.

Vacuum arc furnace Induction melting furnace

Vacuum arc furnace Induction melting furnace

Discover the power of Vacuum Arc Furnace for melting active & refractory metals. High-speed, remarkable degassing effect, and free of contamination. Learn more now!

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.

Vacuum induction melting furnace Arc Melting Furnace

Vacuum induction melting furnace Arc Melting Furnace

Get precise alloy composition with our Vacuum Induction Melting Furnace. Ideal for aerospace, nuclear energy, and electronic industries. Order now for effective smelting and casting of metals and alloys.

Non consumable vacuum arc furnace Induction melting furnace

Non consumable vacuum arc furnace Induction melting furnace

Explore the benefits of Non-Consumable Vacuum Arc Furnace with high melting point electrodes. Small, easy to operate & eco-friendly. Ideal for laboratory research on refractory metals & carbides.

Thermally evaporated tungsten wire

Thermally evaporated tungsten wire

It has a high melting point, thermal and electrical conductivity, and corrosion resistance. It is a valuable material for high temperature, vacuum and other industries.

Boron Nitride (BN) Ceramics-Conductive Composite

Boron Nitride (BN) Ceramics-Conductive Composite

Due to the characteristics of boron nitride itself, the dielectric constant and dielectric loss are very small, so it is an ideal electrical insulating material.

Platinum Sheet Platinum Electrode

Platinum Sheet Platinum Electrode

Platinum sheet is composed of platinum, which is also one of the refractory metals. It is soft and can be forged, rolled and drawn into rod, wire, plate, tube and wire.

Vacuum levitation Induction melting furnace

Vacuum levitation Induction melting furnace

Experience precise melting with our Vacuum Levitation Melting Furnace. Ideal for high melting point metals or alloys, with advanced technology for effective smelting. Order now for high-quality results.


Leave Your Message