Knowledge Which Material is Suitable for Use in the Heating Element? 4 Key Materials You Should Know
Author avatar

Tech Team · Kintek Solution

Updated 1 month ago

Which Material is Suitable for Use in the Heating Element? 4 Key Materials You Should Know

Choosing the right material for a heating element is crucial for the performance and longevity of your equipment. The material you select depends on the specific application and the temperature range you need to achieve. Here are four key materials that are commonly used in heating elements:

Nickel-Chromium (Ni-Cr) Alloys

Which Material is Suitable for Use in the Heating Element? 4 Key Materials You Should Know

Nickel-Chromium alloys are ideal for low to medium temperature applications. These alloys typically contain 80% nickel and 20% chromium. They are suitable for temperatures up to 1,150°C.

One of the main advantages of Ni-Cr alloys is their good resistance to oxidation. This is essential for maintaining the integrity and efficiency of the heating element over time.

The high resistivity of these alloys allows for significant heat generation with a relatively small amount of material. Additionally, their high melting point ensures they can withstand high temperatures without deforming or melting.

Nickel-Chromium-Iron (Ni-Cr-Fe) Alloys

Nickel-Chromium-Iron alloys are another popular choice for heating elements. These alloys usually contain approximately 65% nickel, 15% chromium, and 20% iron. They are recommended for use up to 950°C.

The addition of iron to the alloy reduces the temperature at which oxidation occurs, making these alloys more resistant to degradation in certain environments.

These alloys are also more economical and stronger compared to pure Ni-Cr alloys, making them a cost-effective choice for many industrial applications.

High-Temperature Materials

For applications requiring temperatures above 1,150°C, materials like molybdenum, tungsten, and graphite are preferred. These materials have extremely high melting points and can withstand the intense heat generated in processes like hardening, sintering, and high-temperature brazing.

However, these materials are sensitive to oxygen and require protection from exposure to prevent oxidation, which could degrade their performance.

Summary

The choice of heating element material should be based on the specific requirements of the application, including the necessary temperature range, resistance to oxidation, and economic considerations.

Ni-Cr and Ni-Cr-Fe alloys are versatile and reliable for a wide range of temperatures, while more specialized materials like molybdenum, tungsten, and graphite are suited for extreme high-temperature environments.

Continue Exploring, Consult Our Experts

Elevate the performance of your heating elements with KINTEK’s premium materials selection. From the robust Ni-Cr and Ni-Cr-Fe alloys for versatile temperature ranges to the unparalleled strength of molybdenum, tungsten, and graphite for extreme heat conditions, trust KINTEK to deliver the perfect solution for your specific application needs.

Discover our comprehensive range of high-performance materials and step up your industrial heating solutions today!

Related Products

silicon carbide(SiC) heating element

silicon carbide(SiC) heating element

Experience the advantages of Silicon Carbide (SiC) Heating Element: Long service life, high corrosion and oxidation resistance, fast heating speed, and easy maintenance. Learn more now!

molybdenum disilicide (MoSi2) heating element

molybdenum disilicide (MoSi2) heating element

Discover the power of Molybdenum Disilicide (MoSi2) Heating Element for high-temperature resistance. Unique oxidation resistance with stable resistance value. Learn more about its benefits now!

Thermally evaporated tungsten wire

Thermally evaporated tungsten wire

It has a high melting point, thermal and electrical conductivity, and corrosion resistance. It is a valuable material for high temperature, vacuum and other industries.

Vacuum furnace with ceramic fiber liner

Vacuum furnace with ceramic fiber liner

Vacuum furnace with polycrystalline ceramic fiber insulation liner for excellent heat insulation and uniform temperature field. Choose from 1200℃ or 1700℃ max. working temperature with high vacuum performance and precise temperature control.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

High temperature debinding and pre sintering furnace

High temperature debinding and pre sintering furnace

KT-MD High temperature debinding and pre-sintering furnace for ceramic materials with various molding processes. Ideal for electronic components such as MLCC and NFC.

Continuous working electric heating pyrolysis furnace plant

Continuous working electric heating pyrolysis furnace plant

Efficiently calcine and dry bulk powder and lump fluid materials with an electric heating rotary furnace. Ideal for processing lithium ion battery materials and more.

Alumina (Al2O3) Furnace Tube - High Temperature

Alumina (Al2O3) Furnace Tube - High Temperature

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

High Thermal Conductivity Film Graphitization Furnace

High Thermal Conductivity Film Graphitization Furnace

The high thermal conductivity film graphitization furnace has uniform temperature, low energy consumption and can operate continuously.

Ultra-high temperature graphitization furnace

Ultra-high temperature graphitization furnace

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials.

High Purity Nickel (Ni) Sputtering Target / Powder / Wire / Block / Granule

High Purity Nickel (Ni) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Nickel (Ni) materials for laboratory use? Look no further than our customizable selection! With competitive prices and a range of sizes and shapes to choose from, we have everything you need to meet your unique requirements.

Platinum Sheet Platinum Electrode

Platinum Sheet Platinum Electrode

Platinum sheet is composed of platinum, which is also one of the refractory metals. It is soft and can be forged, rolled and drawn into rod, wire, plate, tube and wire.

metal disk electrode

metal disk electrode

Elevate your experiments with our Metal Disk Electrode. High-quality, acid and alkali resistant, and customizable to fit your specific needs. Discover our complete models today.

Boron Nitride (BN) Ceramic Custom Parts

Boron Nitride (BN) Ceramic Custom Parts

Boron nitride (BN) ceramics can have different shapes, so they can be manufactured to generate high temperature, high pressure, insulation and heat dissipation to avoid neutron radiation.

Boron Nitride (BN) Ceramics-Conductive Composite

Boron Nitride (BN) Ceramics-Conductive Composite

Due to the characteristics of boron nitride itself, the dielectric constant and dielectric loss are very small, so it is an ideal electrical insulating material.

304 stainless steel strip foil 20um thick battery test

304 stainless steel strip foil 20um thick battery test

304 is a versatile stainless steel, which is widely used in the production of equipment and parts that require good overall performance (corrosion resistance and formability).


Leave Your Message