Products Lab Consumables & Materials fine ceramics Alumina (Al₂O₃) Ceramic Positioning Pin - Straight Bevel
Alumina (Al₂O₃) Ceramic Positioning Pin - Straight Bevel

fine ceramics

Alumina (Al₂O₃) Ceramic Positioning Pin - Straight Bevel

Item Number : KM-C012

Price varies based on specs and customizations


Material
Ceramic
Specification
See the form
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Application

Technical ceramics are used in the manufacture of welding guide pins for projection and resistance welding in industry. Ceramic pins are electrically insulating and highly resistant to thermal shock. Ceramic pins have high hardness, high strength, wear resistance and high pressure resistance. In addition, they can be used up to 1200 degrees Celsius, so they last longer and are more economical.

  • Nut welding and plastic mold parts: ceramic pins are widely used in nut welding and plastic mold parts requiring high hardness, wear resistance and insulation performance.
  • Fixtures and stamping die components: Used for fixtures and stamping die components due to their strength, wear resistance and high temperature resistance.
  • Solder Guide Pins: Ceramic pins, including alumina ceramics, are electrically insulating and thermal shock resistant for long-lasting and cost-effective use.
  • Precision shafts, bearings and wear-resistant linings: Alumina ceramic pins are often used in precision shafts, roller and ball bearings and wear-resistant linings because of their high hardness, wear resistance, and low corrosion.
  • Semiconductor parts, machine parts, and electrical insulators: Alumina ceramics are ideal for applications such as semiconductor parts, machine parts, and high-temperature electrical insulators due to their excellent electrical insulation, chemical resistance, and thermal conductivity.
  • High pressure and mechanical seal: Ceramic pins can be used as high voltage insulators, suitable for mechanical seals.

Detail & Parts

Advance ceramic positioning pin detail 1Advance ceramic positioning pin detail 2Advance ceramic positioning pin detail  3Advance ceramic positioning pin detail  4

Technical specifications

model small head diameter middle diameter Bevel Diameter length
M4 3.1mm 4.8mm 9.7mm 22mm
M5 4mm 5.5mm 9.6mm 22mm
M6 4.7mm 6.7mm 9.5mm 26mm
M8 6.3mm 8.5mm 12mm 26mm
M9 6.3mm 9.7mm 12.9mm 28.9mm
M10 8.3mm 10.7mm 13.6mm 24.5mm
M12 9.5mm 12.7mm 14.8mm 26.5mm
M13 10mm 13.7mm 16.8mm 32.9mm
model small head diameter middle diameter Bevel Diameter length
M4 3mm 4.7mm 7.7mm 24.3mm
M5 4mm 5.5mm 9.6mm 22mm
M6 4.8mm 6.7mm 9.9mm 26mm
M8 6.2mm 8.8mm 11.9mm 25.7mm
M10 8.3mm 10.6mm 14.2mm 26.7mm
M12 9.1mm 12.6mm 14.7mm 30.5mm
M14 12.5mm 14.8mm 15.7mm 28.7mm

The produce we show are available in different sizes and custom sizes are available on request.

Advantages

  • Long lifespan: Ceramic pins have excellent wear resistance and can maintain their mechanical properties for a longer period of time, resulting in a longer lifespan.
  • High Temperature Capability: These pins can withstand high temperatures and are suitable for high temperature applications.
  • Cost-Effective: The durability and lifespan of ceramic pins helps save money by reducing the frequency of replacement.
  • Electrically Insulating: Ceramic pins have excellent electrical insulating properties to prevent unwanted conduction in specific applications.
  • Chemical Resistance: Alumina ceramics are especially corrosion resistant, making them suitable for applications requiring contact with corrosive substances.
  • Wide range of applications: Ceramic pins are widely used in various industries such as automotive, manufacturing, semiconductor and electrical due to their multi-functional properties.

FAQ

What are engineering ceramics?

Engineering ceramics are advanced ceramic materials designed for specific mechanical, thermal, electrical, and chemical properties. They are used in applications requiring high performance under extreme conditions.

What are advanced ceramics?

Advanced ceramics are specialized ceramic materials with enhanced properties such as high strength, high temperature resistance, and excellent electrical conductivity. They are used in various industries due to their unique characteristics.

What are the main applications of fine ceramics?

Fine ceramics are used in various applications including tableware, cookware, wall tiles, and sanitaryware. They are also used in structural ceramics like bricks and roof tiles, refractories such as furnace and kiln insulation, metal crucibles, and in advanced technical ceramics for high-temperature applications.

What are the main types of engineering ceramics?

The main types of engineering ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), and boron nitride (BN). Each type has unique properties tailored for different applications.

What are the main types of advanced ceramics?

The main types of advanced ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), aluminum nitride (AlN), and boron nitride (BN). Each type has specific properties suitable for different applications.

What are the main types of fine ceramics?

The main types of fine ceramics include alumina (Al2O3), zirconia, boron nitride (BN), silicon carbide (SiC), and silicon nitride (SiN). Each type has unique properties suitable for different applications.

What are the applications of engineering ceramics?

Engineering ceramics are used in various industries such as aerospace, automotive, electronics, and metallurgy. Applications include wear-resistant parts, high-temperature components, electrical insulators, and heat sinks.

What are the applications of advanced ceramics?

Advanced ceramics are used in various fields such as aerospace, automotive, electronics, medical devices, and industrial machinery. They are valued for their high performance in extreme environments, including high temperatures and corrosive conditions.

What is the principle behind fine ceramics?

Fine ceramics are made through a process involving high-temperature sintering of raw materials to form dense, strong, and durable materials. The specific properties of each type of ceramic are determined by the chemical composition and microstructure achieved during the sintering process.

How do engineering ceramics differ from traditional ceramics?

Engineering ceramics are designed for specific high-performance applications, offering superior mechanical strength, thermal resistance, and chemical stability. Traditional ceramics are more commonly used for decorative and household purposes.

How are advanced ceramics manufactured?

Advanced ceramics are typically manufactured through processes like sintering, hot pressing, or isostatic pressing. These methods ensure the formation of a dense, uniform structure with desired mechanical and thermal properties.

What are the advantages of using fine ceramics?

Fine ceramics offer several advantages including high temperature resistance, excellent electrical insulation, high hardness, wear resistance, chemical resistance, and low thermal expansion. These properties make them ideal for use in extreme environments and for specialized applications.

What are the advantages of using alumina ceramics?

Alumina ceramics are known for their high hardness, wear resistance, and excellent electrical insulation. They also have good thermal conductivity and chemical stability, making them suitable for high-temperature applications.

What are the advantages of using advanced ceramics?

The advantages of advanced ceramics include high hardness, wear resistance, excellent thermal and electrical insulation, high temperature resistance, and chemical stability. These properties make them ideal for demanding applications.

Why are zirconia ceramics preferred in certain applications?

Zirconia ceramics are preferred for their high strength, toughness, and thermal shock resistance. They are often used in applications requiring durability and reliability under high stress and temperature conditions.

What is the difference between alumina and zirconia ceramics?

Alumina ceramics are known for their good electrical conductivity, mechanical strength, and high temperature resistance. Zirconia ceramics, on the other hand, are valued for their high strength, high toughness, and excellent wear resistance.

What makes silicon carbide ceramics suitable for high-temperature applications?

Silicon carbide ceramics have excellent thermal conductivity and high-temperature stability, making them ideal for applications in furnaces, heat exchangers, and other high-temperature environments.

Why are silicon carbide ceramics used in high-temperature applications?

Silicon carbide (SiC) ceramics are used in high-temperature applications due to their high-strength, low-density, and excellent resistance to high temperatures. They are also resistant to chemical corrosion, making them suitable for harsh environments.

How are boron nitride ceramics used in electronics?

Boron nitride ceramics are used in electronics for their excellent electrical insulation and thermal conductivity. They help in dissipating heat from electronic components, preventing overheating and improving performance.

What makes boron nitride ceramics unique?

Boron nitride (BN) ceramics are unique due to their high melting point, high hardness, high thermal conductivity, and high electrical resistivity. Their crystal structure is similar to graphene and harder than diamond, making them suitable for high-performance applications.

What is the manufacturing process of engineering ceramics?

Engineering ceramics are typically manufactured through processes like sintering, hot pressing, or chemical vapor deposition. These processes ensure the formation of dense, strong, and durable ceramic materials.

How do advanced ceramics contribute to energy efficiency?

Advanced ceramics contribute to energy efficiency by providing materials that can withstand high temperatures and corrosive environments in energy production and conversion processes. They help in reducing energy losses and improving the overall efficiency of systems.

Can engineering ceramics be customized for specific applications?

Yes, engineering ceramics can be customized to meet specific application requirements. This includes tailoring their shape, size, and material composition to achieve desired mechanical, thermal, or electrical properties.
View more faqs for this product

4.9

out of

5

These positioning pins exceeded my expectations. They are incredibly durable and have significantly improved the efficiency of our production process.

Vangelis Tsantilas

4.7

out of

5

The pins' electrical insulating properties have been instrumental in preventing unwanted conduction, ensuring the safety and reliability of our operations.

Dr. Keiko Tanaka

4.8

out of

5

The high temperature capability of these pins has been a lifesaver in our high-heat applications. They have held up remarkably well and saved us from costly replacements.

Ing. Karim Ouazzani

4.6

out of

5

The chemical resistance of these pins has been a game-changer for us. They have proven to be impervious to the harsh chemicals we use, resulting in significant savings on maintenance and downtime.

Ms. Aicha Konate

4.9

out of

5

These pins have proven to be an excellent investment. Their durability and longevity have significantly reduced our maintenance costs and downtime.

Dr. Srinivasa Rao

4.7

out of

5

The precision and accuracy of these pins have been a revelation. They have enabled us to achieve a level of precision that we previously thought impossible.

Ms. Aylin Sahin

4.8

out of

5

The versatility of these pins has been remarkable. They have seamlessly integrated into our existing systems and processes, delivering exceptional results.

Eng. Juan Carlos Gonzalez

4.6

out of

5

The customer service provided by KINTEK SOLUTION has been outstanding. They went above and beyond to ensure that we received our order quickly and efficiently.

Ms. Maria Rodriguez

4.9

out of

5

The fast delivery of these pins was a lifesaver. We were able to get our production line up and running again in record time.

Dr. Hassan Ali

4.7

out of

5

The value for money that these pins offer is unbeatable. They are incredibly durable and have saved us a significant amount of money in replacement costs.

Eng. Natalia Ivanova

4.8

out of

5

The technological advancement represented by these pins is truly impressive. They have enabled us to achieve new levels of efficiency and productivity.

Ms. Fatima Bint Mohammed

PDF - Alumina (Al₂O₃) Ceramic Positioning Pin - Straight Bevel

Download

Catalog of Fine Ceramics

Download

Catalog of Engineering Ceramics

Download

Catalog of Advanced Ceramics

Download

Catalog of Fine Ceramics

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Alumina (Al2O3) Ceramic Rod-Insulated

Alumina (Al2O3) Ceramic Rod-Insulated

Insulated alumina rod is a fine ceramic material. Alumina rods have excellent electrical insulating properties, high chemical resistance and low thermal expansion.

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

Aluminium Oxide (Al2O3) Ceramic Washer - Wear-Resistant

Aluminium Oxide (Al2O3) Ceramic Washer - Wear-Resistant

Alumina wear-resistant ceramic washer are used for heat dissipation, which can replace aluminum heat sinks, with high temperature resistance and high thermal conductivity.

Alumina Ceramic Screw - High Quality Insulation And High Temperature Resistance

Alumina Ceramic Screw - High Quality Insulation And High Temperature Resistance

Alumina ceramic screws are fastening components made of 99.5% alumina, ideal for extreme applications requiring excellent thermal resistance, electrical insulation and chemical resistance.

Alumina (Al2O3) Furnace Tube - High Temperature

Alumina (Al2O3) Furnace Tube - High Temperature

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon nitride plate is a commonly used ceramic material in the metallurgical industry due to its uniform performance at high temperatures.

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Alumina oxide protective tube, also known as high temperature resistant corundum tube or thermocouple protection tube, is a ceramic tube mainly made of alumina (aluminum oxide).

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

Silicon Carbide (SIC) Ceramic Plate

Silicon Carbide (SIC) Ceramic Plate

Silicon nitride (sic) ceramic is an inorganic material ceramic that does not shrink during sintering. It is a high-strength, low-density, high-temperature-resistant covalent bond compound.

Alumina Ceramic Saggar - Fine Corundum

Alumina Ceramic Saggar - Fine Corundum

Alumina sagger products have the characteristics of high temperature resistance, good thermal shock stability, small expansion coefficient, anti-stripping, and good anti-powdering performance.

Alumina (Al2O3) Ceramic Crucible Semicircle Boat  with Lid

Alumina (Al2O3) Ceramic Crucible Semicircle Boat with Lid

Crucibles are containers widely used for melting and processing various materials, and semicircular boat-shaped crucibles are suitable for special smelting and processing requirements. Their types and uses vary by material and shape.

Zirconia Ceramic Rod - Stabilized Yttrium Precision Machining

Zirconia Ceramic Rod - Stabilized Yttrium Precision Machining

Zirconia ceramic rods are prepared by isostatic pressing, and a uniform, dense and smooth ceramic layer and transition layer are formed at high temperature and high speed.

Aluminum Nitride (AlN) Ceramic Sheet

Aluminum Nitride (AlN) Ceramic Sheet

Aluminum nitride (AlN) has the characteristics of good compatibility with silicon. It is not only used as a sintering aid or reinforcing phase for structural ceramics, but its performance far exceeds that of alumina.

Aluminum Oxide (Al2O3) Ceramics Heat Sink - Insulation

Aluminum Oxide (Al2O3) Ceramics Heat Sink - Insulation

The hole structure of the ceramic heat sink increases the heat dissipation area in contact with the air, which greatly enhances the heat dissipation effect, and the heat dissipation effect is better than that of super copper and aluminum.

Zirconia Ceramic Plate - Yttria Stabilized Precision Machined

Zirconia Ceramic Plate - Yttria Stabilized Precision Machined

Yttrium-stabilized zirconia has the characteristics of high hardness and high temperature resistance, and has become an important material in the field of refractories and special ceramics.

Boron Nitride (BN) Ceramic Custom Parts

Boron Nitride (BN) Ceramic Custom Parts

Boron nitride (BN) ceramics can have different shapes, so they can be manufactured to generate high temperature, high pressure, insulation and heat dissipation to avoid neutron radiation.

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

TGA/DTA thermal analysis vessels are made of aluminum oxide (corundum or aluminum oxide). It can withstand high temperature and is suitable for analyzing materials that require high temperature testing.

Zirconia Ceramic Ball - Precision Machining

Zirconia Ceramic Ball - Precision Machining

zirconia ceramic ball have the characteristics of high strength, high hardness, PPM wear level, high fracture toughness, good wear resistance, and high specific gravity.

Boron Nitride (BN) Ceramics-Conductive Composite

Boron Nitride (BN) Ceramics-Conductive Composite

Due to the characteristics of boron nitride itself, the dielectric constant and dielectric loss are very small, so it is an ideal electrical insulating material.