Products Lab Consumables & Materials fine ceramics Engineering Advanced Fine Alumina (Al₂O₃) Ceramic Positioning Pin Straight Bevel for Precision Applications
Engineering Advanced Fine Alumina (Al₂O₃) Ceramic Positioning Pin Straight Bevel for Precision Applications

fine ceramics

Engineering Advanced Fine Alumina (Al₂O₃) Ceramic Positioning Pin Straight Bevel for Precision Applications

Item Number : KM-C012

Price varies based on specs and customizations


Material
Ceramic
Specification
See the form
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Application

Technical ceramics are used in the manufacture of welding guide pins for projection and resistance welding in industry. Ceramic pins are electrically insulating and highly resistant to thermal shock. Ceramic pins have high hardness, high strength, wear resistance and high pressure resistance. In addition, they can be used up to 1200 degrees Celsius, so they last longer and are more economical.

  • Nut welding and plastic mold parts: ceramic pins are widely used in nut welding and plastic mold parts requiring high hardness, wear resistance and insulation performance.
  • Fixtures and stamping die components: Used for fixtures and stamping die components due to their strength, wear resistance and high temperature resistance.
  • Solder Guide Pins: Ceramic pins, including alumina ceramics, are electrically insulating and thermal shock resistant for long-lasting and cost-effective use.
  • Precision shafts, bearings and wear-resistant linings: Alumina ceramic pins are often used in precision shafts, roller and ball bearings and wear-resistant linings because of their high hardness, wear resistance, and low corrosion.
  • Semiconductor parts, machine parts, and electrical insulators: Alumina ceramics are ideal for applications such as semiconductor parts, machine parts, and high-temperature electrical insulators due to their excellent electrical insulation, chemical resistance, and thermal conductivity.
  • High pressure and mechanical seal: Ceramic pins can be used as high voltage insulators, suitable for mechanical seals.

Detail & Parts

Advance ceramic positioning pin detail 1Advance ceramic positioning pin detail 2Advance ceramic positioning pin detail  3Advance ceramic positioning pin detail  4

Technical specifications

model small head diameter middle diameter Bevel Diameter length
M4 3.1mm 4.8mm 9.7mm 22mm
M5 4mm 5.5mm 9.6mm 22mm
M6 4.7mm 6.7mm 9.5mm 26mm
M8 6.3mm 8.5mm 12mm 26mm
M9 6.3mm 9.7mm 12.9mm 28.9mm
M10 8.3mm 10.7mm 13.6mm 24.5mm
M12 9.5mm 12.7mm 14.8mm 26.5mm
M13 10mm 13.7mm 16.8mm 32.9mm
model small head diameter middle diameter Bevel Diameter length
M4 3mm 4.7mm 7.7mm 24.3mm
M5 4mm 5.5mm 9.6mm 22mm
M6 4.8mm 6.7mm 9.9mm 26mm
M8 6.2mm 8.8mm 11.9mm 25.7mm
M10 8.3mm 10.6mm 14.2mm 26.7mm
M12 9.1mm 12.6mm 14.7mm 30.5mm
M14 12.5mm 14.8mm 15.7mm 28.7mm

The produce we show are available in different sizes and custom sizes are available on request.

Advantages

  • Long lifespan: Ceramic pins have excellent wear resistance and can maintain their mechanical properties for a longer period of time, resulting in a longer lifespan.
  • High Temperature Capability: These pins can withstand high temperatures and are suitable for high temperature applications.
  • Cost-Effective: The durability and lifespan of ceramic pins helps save money by reducing the frequency of replacement.
  • Electrically Insulating: Ceramic pins have excellent electrical insulating properties to prevent unwanted conduction in specific applications.
  • Chemical Resistance: Alumina ceramics are especially corrosion resistant, making them suitable for applications requiring contact with corrosive substances.
  • Wide range of applications: Ceramic pins are widely used in various industries such as automotive, manufacturing, semiconductor and electrical due to their multi-functional properties.

FAQ

What Are The Main Applications Of Fine Ceramics?

Fine ceramics are used in various applications including tableware, cookware, wall tiles, and sanitaryware. They are also used in structural ceramics like bricks and roof tiles, refractories such as furnace and kiln insulation, metal crucibles, and in advanced technical ceramics for high-temperature applications.

What Is CVD (Chemical Vapor Deposition) And What Are Its Key Advantages?

CVD, or Chemical Vapor Deposition, is a process where materials are deposited onto a substrate from the vapor phase. Key advantages include the ability to coat restricted access surfaces, a wide range of coating materials (metals, alloys, and ceramics), very low porosity levels, high purity, and economical production with large batch numbers.

What Are The Main Types Of Fine Ceramics?

The main types of fine ceramics include alumina (Al2O3), zirconia, boron nitride (BN), silicon carbide (SiC), and silicon nitride (SiN). Each type has unique properties suitable for different applications.

What Are Some Common Applications Of CVD Materials?

CVD materials are used in various applications such as cutting tools, loudspeakers, dressing tools, wire drawing dies, thermal management, electronics, optics, sensing, quantum technologies, and more. They are valued for their superior thermal conductivity, durability, and performance in different environments.

What Is The Principle Behind Fine Ceramics?

Fine ceramics are made through a process involving high-temperature sintering of raw materials to form dense, strong, and durable materials. The specific properties of each type of ceramic are determined by the chemical composition and microstructure achieved during the sintering process.

What Types Of CVD Materials Are Available?

There are several types of CVD materials available, including CVD Diamond coatings, CVD diamond domes, CVD Diamond for dressing tools, CVD Diamond wire drawing die blanks, CVD Diamond cutting tool blanks, CVD boron-doped diamond, CVD diamond for thermal management, and more. Each type is tailored for specific applications.

What Are The Advantages Of Using Fine Ceramics?

Fine ceramics offer several advantages including high temperature resistance, excellent electrical insulation, high hardness, wear resistance, chemical resistance, and low thermal expansion. These properties make them ideal for use in extreme environments and for specialized applications.

How Does CVD Diamond Enhance The Performance Of Cutting Tools?

CVD diamond enhances cutting tools by providing superior wear resistance, low friction, and high thermal conductivity. This makes them ideal for machining non-ferrous materials, ceramics, and composites, ensuring longer tool life and better performance.

What Makes CVD Diamond Domes Suitable For High-performance Loudspeakers?

CVD diamond domes are suitable for high-performance loudspeakers due to their exceptional sound quality, durability, and power handling capabilities. Made with DC Arc Plasma Jet technology, they deliver superior acoustic performance for high-end audio applications.

How Does CVD Diamond Improve Thermal Management In Electronic Devices?

CVD diamond improves thermal management in electronic devices by offering high-quality diamond with thermal conductivity up to 2000 W/mK. This makes it ideal for use in heat spreaders, laser diodes, and GaN on Diamond (GOD) applications, effectively dissipating heat and enhancing device performance.
View more faqs for this product

4.9

out of

5

These positioning pins exceeded my expectations. They are incredibly durable and have significantly improved the efficiency of our production process.

Vangelis Tsantilas

4.7

out of

5

The pins' electrical insulating properties have been instrumental in preventing unwanted conduction, ensuring the safety and reliability of our operations.

Dr. Keiko Tanaka

4.8

out of

5

The high temperature capability of these pins has been a lifesaver in our high-heat applications. They have held up remarkably well and saved us from costly replacements.

Ing. Karim Ouazzani

4.6

out of

5

The chemical resistance of these pins has been a game-changer for us. They have proven to be impervious to the harsh chemicals we use, resulting in significant savings on maintenance and downtime.

Ms. Aicha Konate

4.9

out of

5

These pins have proven to be an excellent investment. Their durability and longevity have significantly reduced our maintenance costs and downtime.

Dr. Srinivasa Rao

4.7

out of

5

The precision and accuracy of these pins have been a revelation. They have enabled us to achieve a level of precision that we previously thought impossible.

Ms. Aylin Sahin

4.8

out of

5

The versatility of these pins has been remarkable. They have seamlessly integrated into our existing systems and processes, delivering exceptional results.

Eng. Juan Carlos Gonzalez

4.6

out of

5

The customer service provided by KINTEK SOLUTION has been outstanding. They went above and beyond to ensure that we received our order quickly and efficiently.

Ms. Maria Rodriguez

4.9

out of

5

The fast delivery of these pins was a lifesaver. We were able to get our production line up and running again in record time.

Dr. Hassan Ali

4.7

out of

5

The value for money that these pins offer is unbeatable. They are incredibly durable and have saved us a significant amount of money in replacement costs.

Eng. Natalia Ivanova

4.8

out of

5

The technological advancement represented by these pins is truly impressive. They have enabled us to achieve new levels of efficiency and productivity.

Ms. Fatima Bint Mohammed

PDF - Engineering Advanced Fine Alumina (Al₂O₃) Ceramic Positioning Pin Straight Bevel for Precision Applications

Download

Catalog of Fine Ceramics

Download

Catalog of Fine Ceramics

Download

Catalog of Cvd Materials

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Precision Machined Zirconia Ceramic Ball for Engineering Advanced Fine Ceramics

Precision Machined Zirconia Ceramic Ball for Engineering Advanced Fine Ceramics

zirconia ceramic ball have the characteristics of high strength, high hardness, PPM wear level, high fracture toughness, good wear resistance, and high specific gravity.

High Temperature Alumina (Al2O3) Furnace Tube for Engineering Advanced Fine Ceramics

High Temperature Alumina (Al2O3) Furnace Tube for Engineering Advanced Fine Ceramics

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

High Quality Alumina Ceramic Screw for Engineering Advanced Fine Ceramics with High Temperature Resistance and Insulation

High Quality Alumina Ceramic Screw for Engineering Advanced Fine Ceramics with High Temperature Resistance and Insulation

Alumina ceramic screws are fastening components made of 99.5% alumina, ideal for extreme applications requiring excellent thermal resistance, electrical insulation and chemical resistance.

Engineering Advanced Fine Alumina Al2O3 Ceramic Rod Insulated for Industrial Applications

Engineering Advanced Fine Alumina Al2O3 Ceramic Rod Insulated for Industrial Applications

Insulated alumina rod is a fine ceramic material. Alumina rods have excellent electrical insulating properties, high chemical resistance and low thermal expansion.

Advanced Engineering Fine Ceramics Alumina Ceramic Saggar for Fine Corundum

Advanced Engineering Fine Ceramics Alumina Ceramic Saggar for Fine Corundum

Alumina sagger products have the characteristics of high temperature resistance, good thermal shock stability, small expansion coefficient, anti-stripping, and good anti-powdering performance.

Custom-Made Alumina Zirconia Special-Shaped Ceramic Plates for Engineering Advanced Fine Ceramics Processing

Custom-Made Alumina Zirconia Special-Shaped Ceramic Plates for Engineering Advanced Fine Ceramics Processing

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

Engineering Advanced Fine Ceramics Alumina Crucibles (Al2O3) for Thermal Analysis TGA DTA

Engineering Advanced Fine Ceramics Alumina Crucibles (Al2O3) for Thermal Analysis TGA DTA

TGA/DTA thermal analysis vessels are made of aluminum oxide (corundum or aluminum oxide). It can withstand high temperature and is suitable for analyzing materials that require high temperature testing.

Engineering Advanced Fine Alumina Al2O3 Ceramic Crucible for Laboratory Muffle Furnace

Engineering Advanced Fine Alumina Al2O3 Ceramic Crucible for Laboratory Muffle Furnace

Alumina ceramic crucibles are used in some materials and metal melting tools, and flat-bottomed crucibles are suitable for melting and processing larger batches of materials with better stability and uniformity.

Engineering Advanced Fine Ceramics Alumina Al2O3 Crucible With Lid Cylindrical Laboratory Crucible

Engineering Advanced Fine Ceramics Alumina Al2O3 Crucible With Lid Cylindrical Laboratory Crucible

Cylindrical Crucibles Cylindrical crucibles are one of the most common crucible shapes, suitable for melting and processing a wide variety of materials, and are easy to handle and clean.

Precision Machined Yttrium Stabilized Zirconia Ceramic Rod for Engineering Advanced Fine Ceramics

Precision Machined Yttrium Stabilized Zirconia Ceramic Rod for Engineering Advanced Fine Ceramics

Zirconia ceramic rods are prepared by isostatic pressing, and a uniform, dense and smooth ceramic layer and transition layer are formed at high temperature and high speed.

High Purity Alumina Granulated Powder for Engineering Advanced Fine Ceramics

High Purity Alumina Granulated Powder for Engineering Advanced Fine Ceramics

Ordinary alumina granulated powder is alumina particles prepared by traditional processes, with a wide range of applications and good market adaptability. This material is known for its high purity, excellent thermal stability and chemical stability, and is suitable for a variety of high-temperature and conventional applications.

High Temperature Aluminum Oxide (Al2O3) Protective Tube for Engineering Advanced Fine Ceramics

High Temperature Aluminum Oxide (Al2O3) Protective Tube for Engineering Advanced Fine Ceramics

Alumina oxide protective tube, also known as high temperature resistant corundum tube or thermocouple protection tube, is a ceramic tube mainly made of alumina (aluminum oxide).

Engineering Advanced Fine Ceramics Aluminium Oxide Al2O3 Ceramic Washer for Wear-Resistant Applications

Engineering Advanced Fine Ceramics Aluminium Oxide Al2O3 Ceramic Washer for Wear-Resistant Applications

Alumina wear-resistant ceramic washer are used for heat dissipation, which can replace aluminum heat sinks, with high temperature resistance and high thermal conductivity.

Arc-Shaped Alumina Ceramic Crucible High Temperature Resistant for Engineering Advanced Fine Ceramics

Arc-Shaped Alumina Ceramic Crucible High Temperature Resistant for Engineering Advanced Fine Ceramics

In the journey of scientific exploration and industrial production, every detail is crucial. Our arc-shaped alumina ceramic crucibles, with their excellent high temperature resistance and stable chemical properties, have become a powerful assistant in laboratories and industrial fields. They are made of high-purity alumina materials and manufactured through precision processes to ensure excellent performance in extreme environments.

Precision Machined Silicon Nitride (SiN) Ceramic Sheet for Engineering Advanced Fine Ceramics

Precision Machined Silicon Nitride (SiN) Ceramic Sheet for Engineering Advanced Fine Ceramics

Silicon nitride plate is a commonly used ceramic material in the metallurgical industry due to its uniform performance at high temperatures.

Silicon Carbide (SIC) Ceramic Sheet Wear-Resistant Engineering Advanced Fine Ceramics

Silicon Carbide (SIC) Ceramic Sheet Wear-Resistant Engineering Advanced Fine Ceramics

Silicon carbide (sic) ceramic sheet is composed of high-purity silicon carbide and ultra-fine powder, which is formed by vibration molding and high-temperature sintering.

Silicon Carbide (SIC) Ceramic Plate for Engineering Advanced Fine Ceramics

Silicon Carbide (SIC) Ceramic Plate for Engineering Advanced Fine Ceramics

Silicon nitride (sic) ceramic is an inorganic material ceramic that does not shrink during sintering. It is a high-strength, low-density, high-temperature-resistant covalent bond compound.

Engineering Advanced Fine Ceramics Aluminum Oxide Al2O3 Heat Sink for Insulation

Engineering Advanced Fine Ceramics Aluminum Oxide Al2O3 Heat Sink for Insulation

The hole structure of the ceramic heat sink increases the heat dissipation area in contact with the air, which greatly enhances the heat dissipation effect, and the heat dissipation effect is better than that of super copper and aluminum.

Engineering Advanced Fine Ceramics Head Tweezers with Pointed Elbow Zirconia Ceramic Tip

Engineering Advanced Fine Ceramics Head Tweezers with Pointed Elbow Zirconia Ceramic Tip

Zirconia ceramic tweezers are a high-precision tool made of advanced ceramic materials, especially suitable for operating environments that require high precision and corrosion resistance. This type of tweezers not only has excellent physical properties, but is also popular in the medical and laboratory fields because of its biocompatibility.

Related Articles

Advanced Alumina Ceramics: Applications and Manufacturing Techniques

Advanced Alumina Ceramics: Applications and Manufacturing Techniques

This article discusses the applications and manufacturing techniques of advanced alumina ceramics, including molds, isostatic pressing, and green bodies.

Find out more
Advanced Alumina Ceramics: Applications and Manufacturing Techniques

Advanced Alumina Ceramics: Applications and Manufacturing Techniques

Overview of alumina ceramics' applications and manufacturing methods, including molds, isostatic pressing, and green body formation.

Find out more
Precision Ceramics in Semiconductor Applications

Precision Ceramics in Semiconductor Applications

Exploring the use of precision ceramics in semiconductor equipment, their properties, and manufacturing processes.

Find out more
New Rapid Sintering Technologies for Advanced Ceramics

New Rapid Sintering Technologies for Advanced Ceramics

Explores advanced ceramic materials, their properties, and various rapid sintering techniques to enhance their performance.

Find out more
Defects and Solutions for Isostatically Pressed Ceramic Balls

Defects and Solutions for Isostatically Pressed Ceramic Balls

This article discusses various defects in isostatically pressed ceramic balls and provides solution strategies for each type of defect.

Find out more
Structure and Properties of High-Temperature Engineering Ceramics

Structure and Properties of High-Temperature Engineering Ceramics

Explore the applications, structural features, and performance advantages of high-temperature engineering ceramics across various industries.

Find out more
Research on Zirconia Ceramics in Dental Restoration

Research on Zirconia Ceramics in Dental Restoration

Explores the properties, preparation, and advantages of zirconia ceramics in dental restoration.

Find out more
Precision Ceramic Materials for Energy Conversion Applications

Precision Ceramic Materials for Energy Conversion Applications

Overview of various ceramic materials used in energy conversion technologies, including heaters, piezoelectric ceramics, and solid oxide fuel cells.

Find out more
Advancements in Engineering Ceramic Materials

Advancements in Engineering Ceramic Materials

Explores new engineering ceramics with exceptional properties and applications in harsh environments, comparing them to traditional materials.

Find out more
Zirconia Ceramic Rod Production Processes: Isostatic Pressing vs. Dry Pressing

Zirconia Ceramic Rod Production Processes: Isostatic Pressing vs. Dry Pressing

A comparison of isostatic pressing and dry pressing in zirconia ceramic rod production, highlighting differences and advantages.

Find out more
Mechanical Properties and Structural Enhancements of Ceramics

Mechanical Properties and Structural Enhancements of Ceramics

An in-depth analysis of the mechanical properties of ceramics, including strengths, weaknesses, and methods for improvement.

Find out more
Understanding Hot Presses and Safety Considerations

Understanding Hot Presses and Safety Considerations

An overview of hot presses, their applications, advantages, and safety precautions.

Find out more