Thematics Tube Furnace

tube furnace

A tube furnace is an electric heating device that is used in chemistry for the synthesis of various inorganic and organic compounds. It consists of a cylindrical tube surrounded by a heating mantle and is made from materials such as quartz, alumina, graphite, and metals. The tube furnace can be controlled via a control panel and can reach high temperatures. It is used for a wide range of processes including ageing, annealing, coating, drying, hardening, calcinations, degassing, sintering, soldering, tempering, and thermocouple calibration. Tube furnaces can also be categorized based on orientation and tube shape.


We have the best tube furnace solutions that will exceed your expectations regardless of your budget. Our extensive portfolio offers a variety of standard solutions suitable for various needs, and our bespoke design service can meet almost any unique customer requirement. Our tube furnaces are available in various models, including single or multi-zone, horizontal/vertical, split & rotating models, and continuous or batch rotary tube furnaces. 

Applications of Tube Furnace

  • Material synthesis and processing
  • Heat treatment and annealing of metals and alloys
  • Thermal analysis and characterization of materials
  • Powder sintering and compaction
  • Crystal growth and epitaxial film deposition
  • Catalytic reaction studies under controlled atmospheres
  • High-temperature testing and experimentation
  • Research and development in materials science and engineering
  • Production of advanced ceramics and composites
  • Production of carbon nanotubes and graphene

Advantages of KINTEK Tube Furnace

  • Mature technology with a simple furnace structure
  • Low power consumption and high thermal efficiency
  • Easy to operate and control with continuous production
  • Fast heating and good operation performance
  • No pollution to the environment
  • Can control temperature easily and remotely with fine adjustment
  • Multiple furnaces can be combined for large-scale production
  • Suitable for various applications, including physiochemical processing of loose materials, cracking of gas, and more
  • High-quality heating element with a long service life
  • Optional exhaust port and inert gas inlet
  • Programmable controllers with adjustable over-temperature protection and safety lock system for door opening and cutting heating.

Our tube furnace is the perfect fit for your laboratory equipment needs. With its extensive product line, it offers a standard solution at a reasonable price. Its unique feature is the custom design service that caters to your specific requirements. The furnace is available in different models, including single or multi-zone, horizontal/vertical, split & rotating, continuous or batch rotary tube furnaces. It is equipped with two or more heating zones and can produce temperatures up to 1800°C. Our tube furnace is ideal for applications requiring relatively small workspaces and features such as multiple zones, independently controlled.

FAQ

What Is A Tube Furnace?

Laboratory tube furnace is one classic external heating high temperature tube furnace, also named hot wall heating furnace.

According to the different working temperature, furnace tube material usually can be transparent quartz tubes, high purity alumina ceramic tubes and high strength metal alloy tubes.

To meet different thermal researching purposes, tube furnace can be designed with multi heating zones, so as to have a flexible control of temperature gradient in the tube working chamber; furnace tube can work with a controlled atmosphere working environment or a high vacuum working environment.

How Does A Tube Furnace Work?

Tube furnace heating elements are placed surrounding the cylindrical cavity, furnace can only heat the samples in the cylindrical cavity through indirect thermal radiation, since furnace tube can prevent sample material from contacting with furnace heating elements and insulation materials, so tube furnace creates a clean isolated heat chamber and reduce risks of the sample material contaminating by the furnace.

What Is The Application For Tube Furnace?

Tubular furnace is mainly used in metallurgy, glass, heat treatment, lithium anode and cathode materials, new energy, abrasives and other industries, and is a professional equipment for measuring materials under certain temperature conditions.

Tube furnace features simple structure, easy operation, easy control and continuous production.

Tube furnace is also widely applied in the CVD (chemical vapor deposition) and plasma enhanced CVD systems.

How Many Different Types Tube Furnace?

Tube furnace can work with different mechanical functions smoothly, so there are many different types tube furnace variations for different experiment purposes, typical furnace furnaces are as below:

  • Horizontal tube furnace
  • Vertical tube furnace
  • Split tube furnace
  • Rotary tube furnace
  • Tilting tube furnace
  • Sliding tube furnace
  • Fast heating and cooling tube furnace
  • Continuous feeding and discharging tube furnace

What Are The Advantages Of Using A Tube Furnace?

Tube furnaces offer several advantages for high-temperature applications. Firstly, they provide precise and uniform temperature control, allowing for accurate and repeatable heating processes. This is crucial for materials research and heat treatment applications where temperature consistency is essential. Secondly, tube furnaces have a compact design, making them suitable for use in limited laboratory or industrial spaces. They are also versatile and can accommodate a wide range of sample sizes and shapes. Additionally, tube furnaces are energy-efficient, as they typically have good insulation and can reach high temperatures quickly. Some models also offer programmable temperature profiles, allowing for automated heating and cooling cycles. Overall, tube furnaces enable efficient and controlled high-temperature processes in various scientific and industrial fields.

What Safety Precautions Should Be Taken When Using A Tube Furnace?

When using a tube furnace, it is important to follow safety precautions to prevent accidents and ensure operator and sample safety. Firstly, proper training should be provided to personnel operating the furnace to ensure they understand its operation, safety features, and emergency procedures. Secondly, appropriate personal protective equipment (PPE), such as heat-resistant gloves, goggles, and lab coats, should be worn to protect against burns and potential hazards. Thirdly, it is crucial to properly load the sample or material inside the furnace, ensuring it is securely positioned and does not obstruct airflow. Adequate ventilation should be provided to remove any potential gases or fumes generated during heating. It is also important to regularly inspect and maintain the furnace, including checking the heating elements and electrical connections, to ensure safe and reliable operation.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

Advantages of Chemical Vapor Deposition

Advantages of Chemical Vapor Deposition

Explores the benefits of chemical vapor deposition, including film formation speed, adhesion strength, and low radiation damage.

Read more
Low Pressure Chemical Vapor Deposition (LPCVD) in Semiconductor Manufacturing

Low Pressure Chemical Vapor Deposition (LPCVD) in Semiconductor Manufacturing

Analyzing the core technology of LPCVD in semiconductor manufacturing, from principles to machine types.

Read more
Understanding Metal Organic Chemical Vapor Deposition (MOCVD) Technology

Understanding Metal Organic Chemical Vapor Deposition (MOCVD) Technology

An in-depth exploration of MOCVD technology, its principles, equipment, and applications in semiconductor growth.

Read more
Introduction to Vacuum Induction Melting: Principles, Processes, and Applications

Introduction to Vacuum Induction Melting: Principles, Processes, and Applications

An overview of vacuum induction melting, its benefits, applications, and equipment structure.

Read more
Choosing the Right Thermocouple for Heat Treatment Processes

Choosing the Right Thermocouple for Heat Treatment Processes

A guide to selecting the appropriate thermocouple for heat treatment processes based on standards and application requirements.

Read more
Role of Heat Treatment Furnace Atmosphere

Role of Heat Treatment Furnace Atmosphere

Explores the critical role of furnace atmospheres in heat treatment processes, detailing their protective and reactive functions.

Read more
Advantages of Mullite Fiber Lining for High-Temperature Furnaces

Advantages of Mullite Fiber Lining for High-Temperature Furnaces

Explores the benefits of mullite fiber linings in high-temperature industrial furnaces, focusing on thermal stability, energy efficiency, and long-term cost savings.

Read more
Optimizing Air and Atmosphere Furnace Systems: 12 Essential Tips

Optimizing Air and Atmosphere Furnace Systems: 12 Essential Tips

A comprehensive guide on maintaining and optimizing air and atmosphere furnace systems for efficiency and quality.

Read more
Six Essential Tips for Vacuum Heat Treatment

Six Essential Tips for Vacuum Heat Treatment

Optimize vacuum furnace performance with expert tips on maintenance, inspection, testing, and more.

Read more
Emergency Measures for Vacuum Sintering Furnace

Emergency Measures for Vacuum Sintering Furnace

Guidelines on handling power outages, heating power loss, and gas stoppage in vacuum sintering furnaces.

Read more
Key Considerations for Selecting a Vacuum Furnace

Key Considerations for Selecting a Vacuum Furnace

Guide on choosing vacuum furnaces based on structure, heating, insulation, vacuum system, and more.

Read more
Vacuum Heat Treatment Furnace: Working Principles and Features

Vacuum Heat Treatment Furnace: Working Principles and Features

An in-depth look at the principles and features of vacuum heat treatment furnaces, highlighting their efficiency, environmental benefits, and operational specifics.

Read more
Common Problems and Considerations in Graphite Rods for Vacuum Sintering Furnaces

Common Problems and Considerations in Graphite Rods for Vacuum Sintering Furnaces

Discusses the selection, performance, installation, and maintenance of graphite rods in vacuum sintering furnaces.

Read more
Vacuum Sintering Furnace Failure Causes and Treatments

Vacuum Sintering Furnace Failure Causes and Treatments

This article discusses various issues and solutions related to vacuum sintering furnace failures.

Read more
5 Frequently Asked Questions about Vacuum Furnaces

5 Frequently Asked Questions about Vacuum Furnaces

Answers to common questions about vacuum furnace maintenance, troubleshooting, and performance.

Read more
Common Faults and Treatment Programs for Vacuum Furnaces

Common Faults and Treatment Programs for Vacuum Furnaces

A guide to identifying and resolving common issues with vacuum furnaces, including electrical and mechanical failures.

Read more
Choosing the Right Tube Furnace for Laboratory Use

Choosing the Right Tube Furnace for Laboratory Use

Guide on selecting a tube furnace based on temperature, sample size, temperature zones, functions, and vacuum systems.

Read more
How Tubular PECVD Adapts to Large Wafer Sizes

How Tubular PECVD Adapts to Large Wafer Sizes

Exploring the challenges and solutions for tubular PECVD in handling large-sized silicon wafers.

Read more
Detailed Processes and Parameters of PECVD for TiN and Si3N4 Deposition

Detailed Processes and Parameters of PECVD for TiN and Si3N4 Deposition

An in-depth exploration of the PECVD processes for TiN and Si3N4, including equipment setup, operational steps, and key process parameters.

Read more
Common Rework Causes and Solutions for Tubular PECVD Coatings

Common Rework Causes and Solutions for Tubular PECVD Coatings

This article discusses common rework causes in PECVD coating for crystalline silicon solar cells and provides feasible solutions to improve quality and reduce costs.

Read more

Downloads

Catalog of Tube Furnace

Download

Catalog of Rotary Tube Furnace

Download

Catalog of Cvd Furnace

Download

Catalog of Cvd Machine

Download

Catalog of Rotary Furnace

Download