Knowledge Does Hardening Steel Change Dimensions? 4 Key Points to Understand
Author avatar

Tech Team · Kintek Solution

Updated 1 month ago

Does Hardening Steel Change Dimensions? 4 Key Points to Understand

Hardening steel can indeed change its dimensions. This process involves heating the steel to a specific temperature and then rapidly cooling it. This rapid cooling, known as quenching, alters the steel's microstructure, increasing its hardness and wear resistance. However, this process can also cause distortion or dimensional changes in the steel due to the uneven contraction of the material.

Does Hardening Steel Change Dimensions? 4 Key Points to Understand

Does Hardening Steel Change Dimensions? 4 Key Points to Understand

1. Heating and Quenching Process

When steel is heated to a high temperature, typically between 1500°F to 1600°F, it transforms into austenite, a high-temperature phase of steel. Rapid cooling, or quenching, is then used to transform this austenite into martensite, a hard and brittle form of steel. This rapid transformation from a high-temperature phase to a low-temperature phase can cause significant internal stresses and uneven contraction, leading to dimensional changes.

2. Dimensional Changes Due to Quenching

The uneven cooling during quenching can cause parts of the steel to contract more than others, leading to warping or distortion. This is particularly true for complex shapes or large cross-sections where cooling rates can vary significantly across the part.

3. Post-Hardening Processes to Manage Distortion

After hardening, steel is often tempered to reduce its hardness and brittleness, which also helps in reducing distortion. Tempering involves reheating the steel to a lower temperature, which allows for some relaxation of the internal stresses and can help in stabilizing the dimensions. Techniques like localized hardening (flame or induction hardening) and nitriding are used to harden specific areas of a part while minimizing changes to the overall dimensions. These methods selectively harden the surface, reducing the impact on the part's overall shape and size.

4. Impact on Material Properties

While hardening increases the hardness and wear resistance of steel, it can also introduce brittleness. The balance between hardness and toughness is crucial, and subsequent tempering processes are used to adjust this balance without significantly altering the dimensions.

Continue exploring, consult our experts

Discover the Precision Power of KINTEK SOLUTION's state-of-the-art steel hardening solutions! Our advanced heating and quenching techniques minimize the risk of dimensional changes and distortion, ensuring your parts maintain peak performance and reliability. With tailored post-hardening processes and innovative localized hardening methods, we help you achieve the perfect balance between hardness and dimensional stability. Trust KINTEK SOLUTION for superior materials and expert solutions that elevate your manufacturing success. Contact us today to unlock the full potential of your steel products!

Related Products

Metal Alloy Grinding Jar With Balls

Metal Alloy Grinding Jar With Balls

Grind and mill with ease using metal alloy grinding jars with balls. Choose from 304/316L stainless steel or tungsten carbide and optional liner materials. Compatible with various mills and features optional functions.

Carbide Lab Press Mold

Carbide Lab Press Mold

Form ultra-hard samples with Carbide Lab Press Mold. Made of Japanese high-speed steel, it has a long service life. Custom sizes available.

CVD Diamond wire drawing die blanks

CVD Diamond wire drawing die blanks

CVD diamond wire drawing die blanks: superior hardness, abrasion resistance, and applicability in wire drawing various materials. Ideal for abrasive wear machining applications like graphite processing.

Drawing die nano-diamond coating HFCVD Equipment

Drawing die nano-diamond coating HFCVD Equipment

The nano-diamond composite coating drawing die uses cemented carbide (WC-Co) as the substrate, and uses the chemical vapor phase method ( CVD method for short ) to coat the conventional diamond and nano-diamond composite coating on the surface of the inner hole of the mold.

Silicon Carbide (SIC) Ceramic Plate

Silicon Carbide (SIC) Ceramic Plate

Silicon nitride (sic) ceramic is an inorganic material ceramic that does not shrink during sintering. It is a high-strength, low-density, high-temperature-resistant covalent bond compound.

Chromium Nickel Alloy (CrNi) Sputtering Target / Powder / Wire / Block / Granule

Chromium Nickel Alloy (CrNi) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Chromium Nickel Alloy (CrNi) materials for your lab? Look no further than our expertly crafted and tailored options. Explore our wide range of sizes and specifications, including sputtering targets, coatings, powders, and more. Shop now!

Vacuum tube hot press furnace

Vacuum tube hot press furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

XRF & KBR steel ring lab Powder Pellet Pressing Mold

XRF & KBR steel ring lab Powder Pellet Pressing Mold

Produce perfect XRF samples with our steel ring lab powder pellet pressing mold. Fast tableting speed and customizable sizes for accurate molding every time.

Square Lab Press Mold

Square Lab Press Mold

Create uniform samples easily with Square Lab Press Mold - available in various sizes. Ideal for battery, cement, ceramics, and more. Custom sizes available.

Cylindrical press mold

Cylindrical press mold

Efficiently form and test most samples with Cylindrical Press Molds in a range of sizes. Made of Japanese high-speed steel, with long service life and customizable sizes.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

Hydrogen atmosphere furnace

Hydrogen atmosphere furnace

KT-AH Hydrogen atmosphere furnace - induction gas furnace for sintering/annealing with built-in safety features, dual housing design, and energy-saving efficiency. Ideal for lab and industrial use.

Vacuum pressure sintering furnace

Vacuum pressure sintering furnace

Vacuum pressure sintering furnaces are designed for high temperature hot pressing applications in metal and ceramic sintering. Its advanced features ensure precise temperature control, reliable pressure maintenance, and a robust design for seamless operation.

Vacuum induction melting furnace Arc Melting Furnace

Vacuum induction melting furnace Arc Melting Furnace

Get precise alloy composition with our Vacuum Induction Melting Furnace. Ideal for aerospace, nuclear energy, and electronic industries. Order now for effective smelting and casting of metals and alloys.

CVD Diamond for dressing tools

CVD Diamond for dressing tools

Experience the Unbeatable Performance of CVD Diamond Dresser Blanks: High Thermal Conductivity, Exceptional Wear Resistance, and Orientation Independence.

600T vacuum induction hot press furnace

600T vacuum induction hot press furnace

Discover the 600T Vacuum Induction Hot Press Furnace, designed for high-temperature sintering experiments in vacuum or protected atmospheres. Its precise temperature and pressure control, adjustable working pressure, and advanced safety features make it ideal for nonmetal materials, carbon composites, ceramics, and metal powders.

9MPa air pressure sintering furnace

9MPa air pressure sintering furnace

The air pressure sintering furnace is a high-tech equipment commonly used for the sintering of advanced ceramic materials. It combines vacuum sintering and pressure sintering techniques to achieve high-density and high-strength ceramics.

304 stainless steel strip foil 20um thick battery test

304 stainless steel strip foil 20um thick battery test

304 is a versatile stainless steel, which is widely used in the production of equipment and parts that require good overall performance (corrosion resistance and formability).

2200 ℃ Tungsten vacuum furnace

2200 ℃ Tungsten vacuum furnace

Experience the ultimate refractory metal furnace with our Tungsten vacuum furnace. Capable of reaching 2200℃, perfect for sintering advanced ceramics and refractory metals. Order now for high-quality results.

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon nitride plate is a commonly used ceramic material in the metallurgical industry due to its uniform performance at high temperatures.


Leave Your Message