Knowledge What are high temperature crucibles made of?
Author avatar

Tech Team · Kintek Solution

Updated 1 week ago

What are high temperature crucibles made of?

High temperature crucibles are typically made of materials that can withstand extreme heat and chemical reactions, such as porcelain, alumina, zirconia, magnesia, platinum, nickel, zirconium, fused quartz, silicon carbide, and boron nitride. These materials are chosen for their high temperature resistance and inertness to various chemical environments.

Porcelain is one of the earliest materials used for crucibles due to its affordability and moderate temperature resistance. It is commonly used for gravimetric chemical analysis in small sizes (10 to 15 ml).

Alumina (Aluminum Oxide, Al2O3) is a widely used material for crucibles, capable of withstanding temperatures up to 1750°C. It is inert to hydrogen, carbon, and refractory metals and can be used in both oxidizing and reducing atmospheres.

Zirconia (Zirconium Oxide, ZrO2) and Magnesia (Magnesium Oxide, MgO) are ceramics that tolerate very high temperatures, often used in crucibles for their excellent thermal stability and resistance to chemical reactions.

Platinum was one of the earliest metals used for crucible making due to its high melting point and chemical inertness. It is ideal for applications requiring resistance to corrosion and high temperatures.

Nickel and Zirconium are more recent additions to the materials used for crucibles, chosen for their ability to withstand high temperatures and their resistance to oxidation and corrosion.

Fused Quartz is excellent for high-temperature applications due to its resistance to thermal shock, making it suitable for melting metals.

Silicon Carbide is a durable material that can withstand high temperatures and is often used in the production of semiconductors.

Boron Nitride is an excellent thermal insulator and is used in high-temperature vacuum furnaces.

The choice of crucible material depends on the specific requirements of the application, including the temperature range, the chemical properties of the material being melted, and the need for resistance to specific chemical environments. For example, graphite crucibles are suitable for metals that do not react with carbon, such as uranium and copper, while crucibles made from calcium oxide or yttrium oxide stabilized zirconia are chosen for alloys with high chemical activity.

In summary, high temperature crucibles are made from a variety of materials, each selected for its specific properties that make it suitable for withstanding extreme temperatures and chemical environments. The selection of the crucible material is crucial for ensuring the integrity of the melting process and the quality of the finished metal or substance.

Discover the Precision of KINTEK SOLUTION Crucibles! At KINTEK SOLUTION, we specialize in crafting high-temperature crucibles from the finest materials, ensuring unparalleled resistance to extreme heat and chemical reactions. From reliable porcelain to state-of-the-art boron nitride, our wide range of crucibles meets the exacting demands of your laboratory needs. Choose KINTEK SOLUTION for materials that guarantee the integrity of your melting processes, and elevate the quality of your research today.

Related Products

Graphite evaporation crucible

Graphite evaporation crucible

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina ceramic crucibles are used in some materials and metal melting tools, and flat-bottomed crucibles are suitable for melting and processing larger batches of materials with better stability and uniformity.

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

TGA/DTA thermal analysis vessels are made of aluminum oxide (corundum or aluminum oxide). It can withstand high temperature and is suitable for analyzing materials that require high temperature testing.

Electron Gun Beam Crucible

Electron Gun Beam Crucible

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

Electron Beam Evaporation Coating / Gold Plating / Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating / Gold Plating / Tungsten Crucible / Molybdenum Crucible

These crucibles act as containers for the gold material evaporated by the electron evaporation beam while precisely directing the electron beam for precise deposition.

Alumina (Al2O3) Crucible With Lid Cylindrical Laboratory Crucible

Alumina (Al2O3) Crucible With Lid Cylindrical Laboratory Crucible

Cylindrical Crucibles Cylindrical crucibles are one of the most common crucible shapes, suitable for melting and processing a wide variety of materials, and are easy to handle and clean.

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.

Evaporation Crucible for Organic Matter

Evaporation Crucible for Organic Matter

An evaporation crucible for organic matter, referred to as an evaporation crucible, is a container for evaporating organic solvents in a laboratory environment.

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Alumina oxide protective tube, also known as high temperature resistant corundum tube or thermocouple protection tube, is a ceramic tube mainly made of alumina (aluminum oxide).

Alumina (Al2O3) Furnace Tube - High Temperature

Alumina (Al2O3) Furnace Tube - High Temperature

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

Alumina (Al2O3) Ceramic Crucible Semicircle Boat  with Lid

Alumina (Al2O3) Ceramic Crucible Semicircle Boat with Lid

Crucibles are containers widely used for melting and processing various materials, and semicircular boat-shaped crucibles are suitable for special smelting and processing requirements. Their types and uses vary by material and shape.

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

1400℃ Tube furnace with Alumina tube

1400℃ Tube furnace with Alumina tube

Looking for a tube furnace for high-temperature applications? Our 1400℃ Tube Furnace with Alumina Tube is perfect for research and industrial use.

Zirconia Ceramic Plate - Yttria Stabilized Precision Machined

Zirconia Ceramic Plate - Yttria Stabilized Precision Machined

Yttrium-stabilized zirconia has the characteristics of high hardness and high temperature resistance, and has become an important material in the field of refractories and special ceramics.

Zirconia Ceramic Rod - Stabilized Yttrium Precision Machining

Zirconia Ceramic Rod - Stabilized Yttrium Precision Machining

Zirconia ceramic rods are prepared by isostatic pressing, and a uniform, dense and smooth ceramic layer and transition layer are formed at high temperature and high speed.

Zirconia Ceramic Gasket - Insulating

Zirconia Ceramic Gasket - Insulating

Zirconia insulating ceramic gasket has high melting point, high resistivity, low thermal expansion coefficient and other properties, making it an important high temperature resistant material, ceramic insulating material and ceramic sunscreen material.

Alkali-free / Boro-aluminosilicate glass

Alkali-free / Boro-aluminosilicate glass

Boroaluminosilicate glass is highly resistant to thermal expansion, making it suitable for applications that require resistance to temperature changes, such as laboratory glassware and cooking utensils.

Alumina (Al2O3) Ceramic Rod-Insulated

Alumina (Al2O3) Ceramic Rod-Insulated

Insulated alumina rod is a fine ceramic material. Alumina rods have excellent electrical insulating properties, high chemical resistance and low thermal expansion.

Electron Beam Evaporation Graphite Crucible

Electron Beam Evaporation Graphite Crucible

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.

Carbon Graphite Boat -Laboratory Tube Furnace with Cover

Carbon Graphite Boat -Laboratory Tube Furnace with Cover

Covered Carbon Graphite Boat Laboratory Tube Furnaces are specialized vessels or vessels made of graphite material designed to withstand extreme high temperatures and chemically aggressive environments.


Leave Your Message