Knowledge What Materials are Used in High Temperature Brazing? (9 Essential Options)
Author avatar

Tech Team · Kintek Solution

Updated 3 months ago

What Materials are Used in High Temperature Brazing? (9 Essential Options)

High temperature brazing is a critical process that requires the right materials to ensure durability and performance.

What Materials are Used in High Temperature Brazing? (9 Essential Options)

What Materials are Used in High Temperature Brazing? (9 Essential Options)

1. Aluminium-Silicon Alloys

Aluminium-silicon alloys are widely used in the aviation and aerospace industries. They are known for their low density and high specific strength. Eutectic aluminium-silicon brazing material is particularly popular for its good wettability, fluidity, and corrosion resistance of brazed joints.

2. Silver-Based Alloys

Silver-based brazing materials offer a low melting point and excellent wetting and caulking performance. They are versatile and can be used to braze almost all ferrous and non-ferrous metals. Additives like zinc, tin, nickel, cadmium, indium, and titanium are often included to enhance their properties.

3. Copper-Based Alloys

Copper-based alloys are based on copper and include elements like phosphorus, silver, zinc, tin, manganese, nickel, cobalt, titanium, silicon, boron, and iron. These elements improve their melting point and overall performance. They are extensively used in brazing copper, carbon steel, cast iron, stainless steel, high temperature alloys, and hard alloys.

4. Nickel-Based Alloys

Nickel-based brazing materials are crucial for brazing stainless steel, high temperature alloys, iron-based alloys, and diamond. They offer excellent resistance to high temperatures and corrosion, making them ideal for vacuum brazing applications.

5. Cobalt-Based Alloys

Cobalt-based brazing materials, typically Co-Cr-Ni based, are known for their high melting point and excellent mechanical properties. They are particularly suitable for brazing cobalt-based alloys and can be enhanced with elements like silicon and tungsten.

6. Titanium-Based Alloys

Titanium, an active metal with high specific strength and excellent corrosion resistance, forms brazing materials that are highly resistant to oxidation and have good wettability. They are used in vacuum brazing and diffusion brazing for a variety of materials including titanium alloys, tungsten, molybdenum, tantalum, niobium, graphite, and ceramics.

7. Gold-Based Alloys

Gold-based brazing materials are used for brazing copper, nickel, logable alloys, and stainless steel. They are particularly suitable for critical applications in the aviation and electronics industries due to their reliability and performance.

8. Palladium-Based Alloys

Palladium-based brazing materials are categorized into several types based on their applications, including graded brazing in the electronics industry and high-temperature brazing. They are used in industries such as electric vacuum and aerospace.

9. Amorphous Brazing Materials

Amorphous brazing materials are developed through rapid cooling and quenching technology. They are used in various applications including plate-fin coolers, radiators, honeycomb structures, and electronic devices.

Each of these materials plays a critical role in high temperature brazing, depending on the specific requirements of the application, such as temperature resistance, corrosion resistance, and mechanical strength. The choice of material is crucial for ensuring the longevity, reliability, and efficiency of the brazing process and the final product.

Continue exploring, consult our experts

Experience the precision and reliability of high-performance brazing solutions with KINTEK SOLUTION. From aluminium-silicon alloys to gold-based brazing materials, our comprehensive range of alloys meets the unique demands of your industry. Unlock the potential of your applications with materials designed for optimal performance and longevity. Trust KINTEK SOLUTION to elevate your brazing process to new heights. Explore our innovative products and take your projects to the next level – contact us today!

Related Products

Vacuum brazing furnace

Vacuum brazing furnace

A vacuum brazing furnace is a type of industrial furnace used for brazing, a metalworking process that joins two pieces of metal using a filler metal that melts at a lower temperature than the base metals. Vacuum brazing furnaces are typically used for high-quality applications where a strong, clean joint is required.

Vacuum arc furnace Induction melting furnace

Vacuum arc furnace Induction melting furnace

Discover the power of Vacuum Arc Furnace for melting active & refractory metals. High-speed, remarkable degassing effect, and free of contamination. Learn more now!

Boron Nitride (BN) Ceramic Custom Parts

Boron Nitride (BN) Ceramic Custom Parts

Boron nitride (BN) ceramics can have different shapes, so they can be manufactured to generate high temperature, high pressure, insulation and heat dissipation to avoid neutron radiation.

Ultra-high temperature graphitization furnace

Ultra-high temperature graphitization furnace

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials.

Vacuum induction melting furnace Arc Melting Furnace

Vacuum induction melting furnace Arc Melting Furnace

Get precise alloy composition with our Vacuum Induction Melting Furnace. Ideal for aerospace, nuclear energy, and electronic industries. Order now for effective smelting and casting of metals and alloys.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

High temperature debinding and pre sintering furnace

High temperature debinding and pre sintering furnace

KT-MD High temperature debinding and pre-sintering furnace for ceramic materials with various molding processes. Ideal for electronic components such as MLCC and NFC.

Vacuum tube hot press furnace

Vacuum tube hot press furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

Hexagonal Boron Nitride(HBN) Thermocouple Protection Tube

Hexagonal Boron Nitride(HBN) Thermocouple Protection Tube

Hexagonal boron nitride ceramics is an emerging industrial material. Because of its similar structure to graphite and many similarities in performance, it is also called "white graphite".

Hexagonal Boron Nitride (HBN) Ceramic Ring

Hexagonal Boron Nitride (HBN) Ceramic Ring

Boron nitride ceramic (BN) rings are commonly used in high temperature applications such as furnace fixtures, heat exchangers and semiconductor processing.

Boron Nitride (BN) Ceramic Parts

Boron Nitride (BN) Ceramic Parts

Boron nitride ((BN) is a compound with high melting point, high hardness, high thermal conductivity and high electrical resistivity. Its crystal structure is similar to graphene and harder than diamond.

Vacuum molybdenum wire sintering furnace

Vacuum molybdenum wire sintering furnace

A vacuum molybdenum wire sintering furnace is a vertical or bedroom structure, which is suitable for withdrawal, brazing, sintering and degassing of metal materials under high vacuum and high temperature conditions. It is also suitable for dehydroxylation treatment of quartz materials.

Non consumable vacuum arc furnace Induction melting furnace

Non consumable vacuum arc furnace Induction melting furnace

Explore the benefits of Non-Consumable Vacuum Arc Furnace with high melting point electrodes. Small, easy to operate & eco-friendly. Ideal for laboratory research on refractory metals & carbides.

Thermally evaporated tungsten wire

Thermally evaporated tungsten wire

It has a high melting point, thermal and electrical conductivity, and corrosion resistance. It is a valuable material for high temperature, vacuum and other industries.

Vacuum pressure sintering furnace

Vacuum pressure sintering furnace

Vacuum pressure sintering furnaces are designed for high temperature hot pressing applications in metal and ceramic sintering. Its advanced features ensure precise temperature control, reliable pressure maintenance, and a robust design for seamless operation.

Molybdenum Vacuum furnace

Molybdenum Vacuum furnace

Discover the benefits of a high-configuration molybdenum vacuum furnace with heat shield insulation. Ideal for high-purity, vacuum environments like sapphire crystal growth and heat treatment.


Leave Your Message