Knowledge How the Amplitude of Shaking Affects Particle Size Distribution: 4 Key Factors to Consider
Author avatar

Tech Team · Kintek Solution

Updated 1 month ago

How the Amplitude of Shaking Affects Particle Size Distribution: 4 Key Factors to Consider

The amplitude of shaking in sieve shakers plays a crucial role in determining the particle size distribution. It influences how particles interact with the sieve mesh and how efficiently they pass through or are retained by the sieve.

Higher amplitudes typically result in more vigorous particle movement. This can enhance the separation of particles by size, particularly for finer particles.

Conversely, lower amplitudes may be more suitable for larger or denser particles. This ensures they do not simply bounce on the sieve surface without proper sieving.

How the Amplitude of Shaking Affects Particle Size Distribution: 4 Key Factors to Consider

How the Amplitude of Shaking Affects Particle Size Distribution: 4 Key Factors to Consider

1. Amplitude and Particle Interaction

In throw-action sieving, as described for electromagnetic sieve shakers like the AS 200 control and AS 300 control, the amplitude can be adjusted from 0 to 2 or 3 mm. This adjustment directly controls the intensity of the three-dimensional movement applied to the sample.

Higher amplitudes cause particles to be thrown more forcefully against the sieve mesh. This can improve the penetration of finer particles through the mesh openings. This is crucial for achieving accurate particle size distribution, especially in the fine to medium particle size range.

2. Efficiency of Separation

The optimal amplitude setting depends on the specific characteristics of the sample, such as particle size, shape, and density. For instance, finer particles require a higher amplitude to overcome surface tension and interparticle forces that might otherwise prevent them from passing through the sieve mesh.

Conversely, larger or denser particles might be effectively sieved at lower amplitudes to prevent them from bouncing excessively without settling on the sieve surface.

3. Reproducibility and Control

Modern sieve shakers equipped with digital amplitude control and continuous monitoring systems ensure that the set amplitude is maintained throughout the sieving process. This level of control is essential for achieving reproducible results, as even slight variations in amplitude can significantly impact the particle size distribution.

The continuous comparison between set and actual amplitude values by the built-in measuring system and control unit helps in maintaining the optimal sieving conditions.

4. Impact on Different Sieve Shakers

Different types of sieve shakers, such as horizontal sieving machines (e.g., Retsch AS 400 control) and vertical or Ro-Tap type shakers, utilize different motion patterns. The amplitude settings in these machines would be adjusted based on the intended motion (horizontal circular for flat or elongated particles, and vertical tapping for more rounded particles).

The amplitude in these machines would be optimized to ensure that the specific motion pattern effectively separates the particles according to their size.

In summary, the amplitude of the shaking in sieve shakers is a critical parameter that directly influences the efficiency and accuracy of particle size distribution analysis. Proper adjustment and control of amplitude are essential for achieving reliable and reproducible results across various types of materials and particle sizes.

Continue exploring, consult our experts

Unlock Precision in Particle Analysis with KINTEK's Advanced Sieve Shakers!

Are you ready to elevate your laboratory's particle size analysis to the next level? KINTEK's cutting-edge sieve shakers offer unparalleled control over amplitude settings, ensuring precise and reproducible results for a wide range of particle sizes and materials.

Our state-of-the-art technology guarantees optimal separation efficiency, tailored to your specific sample characteristics. Don't settle for less when you can achieve the highest standards of accuracy and reliability.

Contact us today to learn more about how KINTEK can transform your sieving processes and deliver the data you need with confidence. Experience the KINTEK difference – where precision meets performance!

Related Products

Vibration Sieve

Vibration Sieve

Efficiently process powders, granules, and small blocks with a high-frequency vibration sieve. Control vibration frequency, screen continuously or intermittently, and achieve accurate particle size determination, separation, and classification.

Two-dimensional vibrating sieve

Two-dimensional vibrating sieve

KT-VT150 is a desktop sample processing instrument for both sieving and grinding. Grinding and sieving can be used both dry and wet. The vibration amplitude is 5mm and the vibration frequency is 3000-3600 times/min.

Dry three-dimensional vibrating sieve

Dry three-dimensional vibrating sieve

The KT-V200 product focuses on solving common sieving tasks in the laboratory. It is suitable for sieving 20g-3kg dry samples.

Wet three-dimensional vibrating sieve

Wet three-dimensional vibrating sieve

The wet three-dimensional vibrating sieving instrument focuses on solving the sieving tasks of dry and wet samples in the laboratory. It is suitable for sieving 20g - 3kg dry, wet or liquid samples.

Slap vibrating sieve

Slap vibrating sieve

KT-T200TAP is a slapping and oscillating sieving instrument for laboratory desktop use, with 300 rpm horizontal circular motion and 300 vertical slapping motions to simulate manual sieving to help sample particles pass through better.

Vibration Mill

Vibration Mill

Vibration Mill for Efficient Sample Preparation, Suitable for Crushing and Grinding a Variety of Materials with Analytical Precision. Supports Dry / Wet / Cryogenic Grinding and Vacuum/Inert Gas Protection.

Dry and wet three-dimensional vibrating sieve

Dry and wet three-dimensional vibrating sieve

KT-VD200 can be used for sieving tasks of dry and wet samples in the laboratory. The screening quality is 20g-3kg. The product is designed with a unique mechanical structure and an electromagnetic vibrating body with a vibration frequency of 3000 times per minute.

Disc / Cup Vibratory Mill

Disc / Cup Vibratory Mill

The vibrating disc mill is suitable for non-destructive crushing and fine grinding of samples with large particle sizes, and can quickly prepare samples with analytical fineness and purity.

High energy vibratory ball mill (double tank type)

High energy vibratory ball mill (double tank type)

High-energy vibration ball mill is a small desktop laboratory grinding instrument. It uses 1700r/min high-frequency three-dimensional vibration to make the sample achieve the result of grinding or mixing.

High Energy Vibratory Ball Mill (Single Tank Type)

High Energy Vibratory Ball Mill (Single Tank Type)

High-energy vibration ball mill is a small desktop laboratory grinding instrument.It can be ball-milled or mixed with different particle sizes and materials by dry and wet methods.

Liquid nitrogen cryogenic vibration ball mill

Liquid nitrogen cryogenic vibration ball mill

Kt-VBM100 is a laboratory desktop high-performance vibrating ball mill and sieving dual-purpose small and lightweight instrument. The vibrating platform with a vibration frequency of 36,000 times/min provides energy.

High Energy Vibratory Ball Mill

High Energy Vibratory Ball Mill

The high-energy vibrating ball mill is a high-energy oscillating and impacting multifunctional laboratory ball mill. The table-top type is easy to operate, small in size, comfortable and safe.


Leave Your Message