Knowledge What is Vapor Growth Technique in Crystal Growth? 5 Key Points Explained
Author avatar

Tech Team · Kintek Solution

Updated 2 months ago

What is Vapor Growth Technique in Crystal Growth? 5 Key Points Explained

Vapor growth technique in crystal growth, specifically vapor phase epitaxy (VPE), is a method used to grow single crystal thin layers on a substrate.

This technique is particularly useful for semiconductors like silicon and gallium arsenide.

It ensures that the grown layer maintains the same crystal orientation as the substrate.

The process involves using high-purity hydrogen as a transport and reducing gas.

This hydrogen reacts with the source material to deposit atoms onto the substrate, forming a single crystal epitaxial layer.

5 Key Points Explained

What is Vapor Growth Technique in Crystal Growth? 5 Key Points Explained

1. Vapor Phase Epitaxy (VPE) Definition and Process

Definition: VPE is a single crystal thin layer growth method where the crystal structure of the grown layer continues the substrate's single crystal structure and maintains the same orientation.

Process: Involves using high-purity hydrogen to transport and reduce the source material. This material then undergoes a chemical reaction to deposit atoms onto the substrate, forming a single crystal epitaxial layer.

2. Types of VPE and Their Applications

Silicon VPE: Used to grow silicon single crystal epitaxial layers.

GaAs VPE: Typically involves two methods, the chloride method and the hydride method. It is widely used in devices like Hall devices, Geng diodes, and field effect transistors.

3. Pyrolysis Method in Crystal Growth

Method Description: Involves transporting certain volatile substances containing film elements to the growth area and generating required substances through thermal decomposition reaction.

Temperature Range: Growth temperature is between 1000-1050 degrees Celsius.

4. Synthesis Reaction Method

Process: Involves several gaseous substances reacting in the growth zone to form growing substances.

Application: Used in both bulk crystal growth and thin film material growth.

5. High Temperature Chemical Vapor Deposition (HTCVD)

Method Description: Involves growing silicon carbide crystals in a closed reactor with external heating to maintain high temperatures (2000°C - 2300°C).

Process Steps: Includes the mixed reaction gas reaching the substrate surface, decomposition at high temperature, chemical reaction on the substrate surface to generate a solid crystal film, and continuous growth by continuously introducing reaction gas.

6. Advantages of Vapor Growth Techniques

Homogeneity: Ensures uniform crystal growth by controlling the uniformity of the reaction source airflow and temperature distribution.

Growth Rate Control: The crystal growth rate is proportional to the flow rate of the Group III source, allowing for adjustable growth rates.

Flexibility: Can grow a wide range of materials as long as suitable raw materials are selected.

Simplicity: The structure of the reaction chamber is simpler due to lower vacuum requirements.

In-situ Monitoring: With the development of detection technology, the growth process can be monitored in situ.

7. Application of Glass Reactors in Crystal Growth

Conditions Provided: Glass reactors provide a dust-free environment and can control stable temperature and pressure, making the crystal growth process more controllable.

Transparency: Allows chemists to observe the process, enhancing control and precision.

In summary, vapor growth techniques, particularly vapor phase epitaxy, are crucial for growing high-quality single crystal thin layers on substrates.

These techniques ensure uniformity, control, and flexibility in the growth process.

They are essential for the production of various semiconductor devices and materials.

Continue exploring, consult our experts

Unlock the potential of your semiconductor projects with KINTEK SOLUTION's cutting-edge vapor growth techniques.

Experience the precision of vapor phase epitaxy (VPE), and witness crystal-quality epitaxial layer growth.

Our high-purity hydrogen-based processes ensure unparalleled homogeneity and growth rate control.

Don't settle for less than perfection in your materials.

Contact KINTEK SOLUTION today to discover how our innovative crystal growth solutions can elevate your semiconductor development.

Start your journey to precision perfection now.

Related Products

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Get high-quality diamond films with our Bell-jar Resonator MPCVD machine designed for lab and diamond growth. Discover how Microwave Plasma Chemical Vapor Deposition works for growing diamonds using carbon gas and plasma.

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Learn about Cylindrical Resonator MPCVD Machine, the microwave plasma chemical vapor deposition method used for growing diamond gemstones and films in the jewelry and semi-conductor industries. Discover its cost-effective advantages over traditional HPHT methods.

Evaporation Crucible for Organic Matter

Evaporation Crucible for Organic Matter

An evaporation crucible for organic matter, referred to as an evaporation crucible, is a container for evaporating organic solvents in a laboratory environment.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

915MHz MPCVD Diamond Machine

915MHz MPCVD Diamond Machine

915MHz MPCVD Diamond Machine and its multi-crystal effective growth, the maximum area can reach 8 inches, the maximum effective growth area of single crystal can reach 5 inches. This equipment is mainly used for the production of large-size polycrystalline diamond films, the growth of long single crystal diamonds, the low-temperature growth of high-quality graphene, and other materials that require energy provided by microwave plasma for growth.

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible enables precise co-deposition of various materials. Its controlled temperature and water-cooled design ensure pure and efficient thin film deposition.

Ceramic Evaporation Boat Set

Ceramic Evaporation Boat Set

It can be used for vapor deposition of various metals and alloys. Most metals can be evaporated completely without loss. Evaporation baskets are reusable.1

Graphite evaporation crucible

Graphite evaporation crucible

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

High Purity Hafnium (Hf) Sputtering Target / Powder / Wire / Block / Granule

High Purity Hafnium (Hf) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Hafnium (Hf) materials tailored to your lab needs at reasonable prices. Find various shapes and sizes for sputtering targets, coating materials, powders, and more. Order now.

Electron Gun Beam Crucible

Electron Gun Beam Crucible

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

Customer made versatile CVD tube furnace CVD machine

Customer made versatile CVD tube furnace CVD machine

Get your exclusive CVD furnace with KT-CTF16 Customer Made Versatile Furnace. Customizable sliding, rotating, and tilting functions for precise reactions. Order now!

Hemispherical Bottom Tungsten / Molybdenum Evaporation Boat

Hemispherical Bottom Tungsten / Molybdenum Evaporation Boat

Used for gold plating, silver plating, platinum, palladium, suitable for a small amount of thin film materials. Reduce the waste of film materials and reduce heat dissipation.

Electron Beam Evaporation Graphite Crucible

Electron Beam Evaporation Graphite Crucible

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.

evaporation boat for organic matter

evaporation boat for organic matter

The evaporation boat for organic matter is an important tool for precise and uniform heating during the deposition of organic materials.

Split chamber CVD tube furnace with vacuum station CVD machine

Split chamber CVD tube furnace with vacuum station CVD machine

Efficient split chamber CVD furnace with vacuum station for intuitive sample checking and quick cooling. Up to 1200℃ max temperature with accurate MFC mass flowmeter control.

High Purity Hafnium Oxide (HfO2) Sputtering Target / Powder / Wire / Block / Granule

High Purity Hafnium Oxide (HfO2) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Hafnium Oxide (HfO2) materials for your laboratory needs at affordable prices. Our customized products come in various sizes and shapes, including sputtering targets, coatings, powders, and more.

Hydrogen atmosphere furnace

Hydrogen atmosphere furnace

KT-AH Hydrogen atmosphere furnace - induction gas furnace for sintering/annealing with built-in safety features, dual housing design, and energy-saving efficiency. Ideal for lab and industrial use.

Vertical tube furnace

Vertical tube furnace

Elevate your experiments with our Vertical Tube Furnace. Versatile design allows for operation under various environments and heat treatment applications. Order now for precise results!


Leave Your Message