Products Thermal Equipment Muffle Furnace

Muffle Furnace

The muffle furnace, also known as a box or chamber furnace, was referred to as a muffle furnace due to its historical usage. In the past, muffle furnaces were heated using wood, oil, and gas, but nowadays they are typically electrically heated. Additionally, modern muffle furnaces feature lightweight, high-temperature-resistant ceramic fibers as insulation material, and more intelligent and accurate thermal controllers. As a result, muffle furnaces are now among the most widely used laboratory furnaces.


What is a large box furnace use for?

Large box furnace is used for batch processing of big size material or big quantity materials, it can be used both in the laboratory experiments and industrial productions. Large box furnace with two chambers is called dual chamber furnace,two furnace chambers are working independently but share same footprint,dual chamber furnace can increase the thermal processing capacity greatly, widely used for annealing and tempering heat treatment.

Large box furnace is widely used for purpose of ashing, sintering and heat treatment, application fields include ceramic,cement,glass, and new materials researching.

Muffle furnace accessories

Muffle furnace accessories are the consuming parts with daily operation, like resistant heating wires, SiC heaters, MoSi2 heaters, insulation chambers, furnace crucibles, furnace thermal controllers, temperature sensors , etc.

KinTek - one professional of muffle furnace suppliers

Muffle furnace by KinTek has a wide range of working temperature, KT-12M series box furnace applies Cr2Al2Mo2 wire coil heating element, its working temperature is up to 1200℃.

KT-14M series box furnace applies Silicon carbide heating element, its working temperature is up to 1400℃.

KT-17M and KT18M series box furnace applies standard MoSi2 and super MoSi2 heating element working temperature is up to 1700℃ and 1800℃.

FAQ

What Are Muffle Furnace Used For?

Muffle furnaces are mainly used for high-temperature applications in industrial manufacturing and laboratory environments. They provide a controlled and insulated environment for heating materials, allowing precise temperature control. Muffle furnaces are ideal for ashing samples, heat-treating applications, and materials research. They are commonly used for melting glass, creating enamel coatings, technical ceramics, soldering, and brazing. Muffle furnaces use technology and design to achieve greater control of temperature uniformity and isolate heated materials from combustion contaminants.

What Are The Types Of Muffle Furnace?

Box furnace, tube furnace, crucible furnace, split furnace, vacuum furnace, and multi-zone furnace are some types of muffle furnaces. The choice of muffle furnace depends on the specific application and requirements of the user.

What Is Muffle Furnace In Chemistry?

A muffle furnace is a type of oven equipment used in chemistry that can reach high temperatures and provides a controlled and insulated environment for heating materials, allowing precise temperature control. It separates the object to be heated from all byproducts of combustion from the heat source. Muffle furnaces are used in solid-state reactions, such as reducing metals or creating oxides, and for limiting oxygen exposure in materials. They are also used in high-temperature chemical vapor deposition processes and are ideal for ashing samples, heat-treating applications, and materials research.

What Is The Use Of Muffle Furnace For Ash?

Muffle furnaces are commonly used for ashing samples, which involves heating materials to high temperatures to determine their percentage of ash content. This process is helpful in testing and treating materials in various industries such as cement making, foundry, and nuclear sectors. The standard muffle furnace is also used for manufacturing glass, ceramics, and other materials. Overall, muffle furnaces play a vital role in material testing and treatment at high temperatures, making them a crucial apparatus in many industries.

What Is The Temperature Of Muffle Furnace?

The temperature range of a muffle furnace is between 800°C to 1800°C, with a maximum temperature of 1473 K (1200°C; 2192°F). It is crucial to choose a furnace that will reach the desired temperature for your applications. Muffle furnaces are commonly used in metallurgy, glassmaking, ceramics, and other industries that require materials to be melted or heated to high temperatures. It usually takes approximately an hour for a muffle furnace to reach maximum temperature.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

From Milliseconds to Megawatts: Deconstructing Industrial Combustion with a Drop Tube Furnace

From Milliseconds to Megawatts: Deconstructing Industrial Combustion with a Drop Tube Furnace

A drop tube furnace isolates individual particle reactions, providing the critical data needed to optimize large-scale industrial combustion.

Read more
The Thermal Event Horizon: Engineering Beyond the Melting Point

The Thermal Event Horizon: Engineering Beyond the Melting Point

Maximum temperature in vacuum furnaces isn't just a number—it's a system of constraints. Discover how to balance physics, cost, and material science.

Read more
The Geometry of Heat: Why Motion Matters in Material Synthesis

The Geometry of Heat: Why Motion Matters in Material Synthesis

Static heating creates inconsistencies. Discover how rotary tube furnaces utilize dynamic motion to achieve perfect uniformity in powder and granule processing.

Read more
The Architecture of Extremes: Mastering the Thermal Ceiling

The Architecture of Extremes: Mastering the Thermal Ceiling

The maximum temperature of a vacuum furnace isn't just a number—it's a design philosophy. Explore the engineering behind 2200°C and precise thermal control.

Read more
Perfection in a Void: The Relentless Engineering Behind the Modern Vacuum Furnace

Perfection in a Void: The Relentless Engineering Behind the Modern Vacuum Furnace

Discover the history of vacuum furnaces, a story of fighting atmospheric contamination to create the ultra-pure, high-performance alloys of modern technology.

Read more
The Architecture of Emptiness: Mastering Material Selection in Vacuum Furnaces

The Architecture of Emptiness: Mastering Material Selection in Vacuum Furnaces

Discover the critical engineering behind vacuum furnace materials. Learn why the choice between Graphite, Molybdenum, and Tungsten defines your process success.

Read more
The Architecture of Nothingness: Anatomy of a Vacuum Furnace

The Architecture of Nothingness: Anatomy of a Vacuum Furnace

A deep dive into the engineering systems of vacuum furnaces. Understanding the interplay of vacuum, heat, and control for precise material science.

Read more
The Architecture of Heat: Why Control Outweighs Power in Tube Furnaces

The Architecture of Heat: Why Control Outweighs Power in Tube Furnaces

In tube furnace selection, maximum temperature is only half the story. Discover why heating zone configuration is the true architect of thermal precision.

Read more
Beyond Heat: How Pressure Forges Near-Perfect Materials

Beyond Heat: How Pressure Forges Near-Perfect Materials

Hot pressing uses uniaxial pressure with heat to eliminate porosity, achieving near-theoretical material density faster than sintering alone.

Read more
The Art of the Void: Engineering Perfection in a Vacuum

The Art of the Void: Engineering Perfection in a Vacuum

Discover how vacuum furnaces leverage the power of nothingness to achieve oxidation-free purity, thermal uniformity, and absolute process control.

Read more
The Thermodynamics of Patience: Respecting the Tube Furnace

The Thermodynamics of Patience: Respecting the Tube Furnace

A tube furnace is a precision instrument, not an oven. Discover why thermal shock is the enemy and how the psychology of patience saves your lab budget.

Read more
Beyond Heat: The Tube Furnace as a Controlled Micro-Environment

Beyond Heat: The Tube Furnace as a Controlled Micro-Environment

Discover how a tube furnace's unique ability to control both temperature and atmosphere makes it indispensable for high-purity material synthesis.

Read more
Heating by Light: The Physics of Precision in a Vacuum Furnace

Heating by Light: The Physics of Precision in a Vacuum Furnace

Vacuum furnaces use thermal radiation, not air, for heat transfer. This line-of-sight process enables unparalleled precision and purity.

Read more
The Silent Feedback Loop: Why Precision is a System, Not a Switch

The Silent Feedback Loop: Why Precision is a System, Not a Switch

Precision in a tube furnace isn't about raw power; it's about the dialogue between the thermocouple and the PID controller. Discover the engineering behind thermal stability.

Read more
More Than Nothing: The Art of Partial Pressure in High-Temperature Furnaces

More Than Nothing: The Art of Partial Pressure in High-Temperature Furnaces

Discover how partial pressure in vacuum furnaces prevents material damage and ensures uniform heating—a technique where adding gas is more precise than removing it.

Read more
The Art of the Void: Why Absence Creates the Strongest Bonds

The Art of the Void: Why Absence Creates the Strongest Bonds

Discover how vacuum furnace brazing utilizes the absence of atmosphere to create metallurgically pure, flux-free joints that defy traditional welding limitations.

Read more
The Anatomy of Control: Why Every Component in a Tube Furnace Matters

The Anatomy of Control: Why Every Component in a Tube Furnace Matters

A tube furnace isn't just a heater; it's a modular system where each component—from tube to flange—is a decision impacting process control.

Read more
The Glass Ceiling: Navigating the True Thermal Limits of Quartz Tube Furnaces

The Glass Ceiling: Navigating the True Thermal Limits of Quartz Tube Furnaces

The 1200°C limit on a quartz tube is not a guarantee—it is a variable. Learn how purity, atmosphere, and time dictate the true lifespan of your furnace.

Read more
Creating Perfection in a Void: The Physics and Psychology of the Vacuum Furnace

Creating Perfection in a Void: The Physics and Psychology of the Vacuum Furnace

Discover how vacuum tube furnaces create oxygen-free environments to prevent contamination and enable high-purity materials synthesis.

Read more
The Architecture of Heat: Why Context Dictates Furnace Design

The Architecture of Heat: Why Context Dictates Furnace Design

Tube furnace design is rarely generic. Explore how temperature, atmosphere, and throughput dictate the engineering of thermal systems.

Read more