Knowledge What are the factors that affect the strength of a brazed joint?
Author avatar

Tech Team · Kintek Solution

Updated 3 months ago

What are the factors that affect the strength of a brazed joint?

The factors that affect the strength of a brazed joint include:

1. Clearance between parts: The gap between the metal pieces being brazed should be neither too wide nor too narrow. A too-wide gap weakens the bond, while a too-narrow gap can prevent the formation of a strong bond.

2. Base metal composition: The composition of the base metal can influence the strength of the brazed joint. Factors such as carbide precipitation, hydrogen embrittlement, heat-affected-zone characteristics, oxide stability, and sulfur embrittlement can affect the base metal properties.

3. Filler metal selection: The choice of filler metal is crucial in ensuring the quality of the brazed joint. Factors such as melting point, wettability, diffusivity, filling gap ability, and linear expansion coefficient should be considered when selecting the filler metal.

4. Joint design and clearance: The design of the joint plays a significant role in the strength of the brazed joint. An unbroken capillary path with gaps not exceeding 0.1mm is required for most applications. Joints should be self-supporting or self-jigging to avoid the need for expensive furnace jigs.

5. Joint quality: The quality of the brazed joint, including low voids and good penetration, can affect its strength. Proper surface preparation and cleaning of the metal surfaces before brazing are essential to ensure a strong bond.

6. Service temperature: The temperature at which the brazed joint will be subjected to during service can also impact its strength. The choice of base metal and filler metal should be suitable for the intended service temperature.

7. Joint assembly and alignment: Proper assembly and alignment of the components throughout the brazing process are important to maintain the strength of the joint. Clamps or support fixtures can help with proper positioning.

8. Brazing process parameters: Factors such as temperature, time, rate and source of heating during the brazing process can affect the strength of the joint. Controlling these parameters is crucial to produce a mechanically sound brazed joint.

In summary, the strength of a brazed joint is influenced by factors such as clearance between parts, base metal composition, filler metal selection, joint design, joint quality, service temperature, joint assembly and alignment, and brazing process parameters. Considering these factors and ensuring proper control of variables can help produce strong and reliable brazed joints.

Looking for high-quality brazing equipment? Look no further than KINTEK! With our wide range of products and expertise, we can help you achieve strong and reliable joints. From surface preparation to selecting the right filler metal, our equipment is designed to meet all your brazing needs. Don't compromise on joint strength - choose KINTEK for superior results. Contact us today to find the perfect solution for your brazing requirements!

Related Products

Vacuum brazing furnace

Vacuum brazing furnace

A vacuum brazing furnace is a type of industrial furnace used for brazing, a metalworking process that joins two pieces of metal using a filler metal that melts at a lower temperature than the base metals. Vacuum brazing furnaces are typically used for high-quality applications where a strong, clean joint is required.

Vacuum arc furnace Induction melting furnace

Vacuum arc furnace Induction melting furnace

Discover the power of Vacuum Arc Furnace for melting active & refractory metals. High-speed, remarkable degassing effect, and free of contamination. Learn more now!

Thermally evaporated tungsten wire

Thermally evaporated tungsten wire

It has a high melting point, thermal and electrical conductivity, and corrosion resistance. It is a valuable material for high temperature, vacuum and other industries.

Boron Nitride (BN) Ceramic Rod

Boron Nitride (BN) Ceramic Rod

Boron nitride (BN) rod is the strongest boron nitride crystal form like graphite, which has excellent electrical insulation, chemical stability and dielectric properties.

Vacuum induction melting furnace Arc Melting Furnace

Vacuum induction melting furnace Arc Melting Furnace

Get precise alloy composition with our Vacuum Induction Melting Furnace. Ideal for aerospace, nuclear energy, and electronic industries. Order now for effective smelting and casting of metals and alloys.

Vacuum molybdenum wire sintering furnace

Vacuum molybdenum wire sintering furnace

A vacuum molybdenum wire sintering furnace is a vertical or bedroom structure, which is suitable for withdrawal, brazing, sintering and degassing of metal materials under high vacuum and high temperature conditions. It is also suitable for dehydroxylation treatment of quartz materials.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

Vacuum tube hot press furnace

Vacuum tube hot press furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

Small vacuum tungsten wire sintering furnace

Small vacuum tungsten wire sintering furnace

The small vacuum tungsten wire sintering furnace is a compact experimental vacuum furnace specially designed for universities and scientific research institutes. The furnace features a CNC welded shell and vacuum piping to ensure leak-free operation. Quick-connect electrical connections facilitate relocation and debugging, and the standard electrical control cabinet is safe and convenient to operate.

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.

Boron Nitride (BN) Ceramic Parts

Boron Nitride (BN) Ceramic Parts

Boron nitride ((BN) is a compound with high melting point, high hardness, high thermal conductivity and high electrical resistivity. Its crystal structure is similar to graphene and harder than diamond.

Boron Nitride (BN) Ceramic Custom Parts

Boron Nitride (BN) Ceramic Custom Parts

Boron nitride (BN) ceramics can have different shapes, so they can be manufactured to generate high temperature, high pressure, insulation and heat dissipation to avoid neutron radiation.

Vacuum dental porcelain sintering furnace

Vacuum dental porcelain sintering furnace

Get precise and reliable results with KinTek's Vacuum Porcelain Furnace. Suitable for all porcelain powders, it features hyperbolic ceramic furnace function, voice prompt, and automatic temperature calibration.

Vacuum pressure sintering furnace

Vacuum pressure sintering furnace

Vacuum pressure sintering furnaces are designed for high temperature hot pressing applications in metal and ceramic sintering. Its advanced features ensure precise temperature control, reliable pressure maintenance, and a robust design for seamless operation.

Vacuum levitation Induction melting furnace

Vacuum levitation Induction melting furnace

Experience precise melting with our Vacuum Levitation Melting Furnace. Ideal for high melting point metals or alloys, with advanced technology for effective smelting. Order now for high-quality results.

Heating Circulator

Heating Circulator

Efficient and reliable, KinTek KHB Heating Circulator is perfect for your lab needs. With a max. heating temperature of up to 300℃, it features accurate temperature control and fast heating.

Automatic Lab XRF & KBR Pellet Press 30T / 40T / 60T

Automatic Lab XRF & KBR Pellet Press 30T / 40T / 60T

Fast and easy xrf sample pellet preparation with KinTek Automatic Lab Pellet Press. Versatile and accurate results for X-ray fluorescence analysis.

1-5L Single Glass Reactor

1-5L Single Glass Reactor

Find your ideal glass reactor system for synthetic reactions, distillation, and filtration. Choose from 1-200L volumes, adjustable stirring and temperature control, and custom options. KinTek has you covered!

Bottom lifting furnace

Bottom lifting furnace

Efficiently produce batches with excellent temperature uniformity using our Bottom Lifting Furnace. Features two electric lifting stages and advanced temperature control up to 1600℃.

High temperature debinding and pre sintering furnace

High temperature debinding and pre sintering furnace

KT-MD High temperature debinding and pre-sintering furnace for ceramic materials with various molding processes. Ideal for electronic components such as MLCC and NFC.

80-150L Jacket Glass Reactor

80-150L Jacket Glass Reactor

Looking for a versatile jacket glass reactor system for your lab? Our 80-150L reactor offers controlled temperature, speed, and mechanical functions for synthetic reactions, distillation, and more. With customizable options and tailored services, KinTek has you covered.

10-50L Jacket Glass Reactor

10-50L Jacket Glass Reactor

Discover the Versatile 10-50L Jacket Glass Reactor for Pharmaceutical, Chemical, and Biological Industries. Accurate Stirring Speed Control, Multiple Safety Protections, and Customizable Options Available. KinTek, Your Glass Reactor Partner.

80-150L Single Glass Reactor

80-150L Single Glass Reactor

Looking for a glass reactor system for your lab? Our 80-150L single glass reactor offers controlled temperature, speed, and mechanical functions for synthetic reactions, distillation, and more. With customizable options and tailored services, KinTek has you covered.

10-50L Single Glass Reactor

10-50L Single Glass Reactor

Looking for a reliable single glass reactor system for your lab? Our 10-50L reactor offers precise temperature and stirring control, durable support, and safety features for synthetic reactions, distillation, and more. KinTek's customizable options and tailored services are here to meet your needs.


Leave Your Message