Knowledge What is thermal evaporation? A Guide to Thin Film Deposition Techniques
Author avatar

Tech Team · Kintek Solution

Updated 1 week ago

What is thermal evaporation? A Guide to Thin Film Deposition Techniques

Thermal evaporation is a widely used physical vapor deposition (PVD) technique for creating thin films on substrates. The process involves heating a target material in a vacuum chamber until it evaporates, forming a vapor that travels through the vacuum and deposits onto a substrate, creating a thin film. The heat source can be resistive heating (using a boat or coil) or electron beam heating. The method is favored for its simplicity, ability to produce high-purity films, and strong adhesion properties. It is commonly used in industries such as electronics, optics, and coatings for depositing metals, alloys, and other stable materials.

Key Points Explained:

What is thermal evaporation? A Guide to Thin Film Deposition Techniques
  1. Vacuum Environment:

    • Thermal evaporation takes place in a high vacuum chamber to minimize contamination and ensure efficient vapor travel.
    • The vacuum reduces the presence of air molecules, preventing unwanted reactions and ensuring the vaporized material travels directly to the substrate.
  2. Heating Mechanism:

    • The target material is heated using either resistive heating (via a boat, coil, or basket) or electron beam heating.
    • In resistive heating, an electric current passes through a refractory metal element, generating heat that melts and evaporates the material.
    • Electron beam heating uses a focused beam of high-energy electrons to directly heat and vaporize the material.
  3. Evaporation Process:

    • The material is heated to its evaporation point, where it transitions from a solid or liquid state to a vapor.
    • The vapor pressure created in the vacuum chamber allows the material to form a vapor cloud.
  4. Vapor Travel and Deposition:

    • The vaporized material travels through the vacuum chamber in a straight line due to the lack of air resistance.
    • The vapor condenses onto the substrate, forming a thin film with good adhesion and purity.
  5. Substrate Coating:

    • The substrate is positioned above or near the evaporation source to ensure uniform coating.
    • The resulting film thickness and uniformity depend on factors like material properties, evaporation rate, and substrate positioning.
  6. Applications:

    • Thermal evaporation is used in industries such as electronics (for metal contacts and interconnects), optics (for reflective and anti-reflective coatings), and decorative coatings.
    • It is particularly suitable for depositing metals (e.g., aluminum, gold, silver) and alloys.
  7. Advantages:

    • High purity of deposited films due to the vacuum environment.
    • Strong adhesion of the film to the substrate.
    • Simple and cost-effective compared to other PVD techniques.
  8. Limitations:

    • Limited to materials that can be vaporized without decomposition.
    • May not be suitable for materials with very high melting points or complex compositions.

By following these principles, thermal evaporation provides a reliable and efficient method for depositing thin films with precise control over thickness and composition.

Summary Table:

Key Aspect Details
Vacuum Environment High vacuum minimizes contamination and ensures efficient vapor travel.
Heating Mechanism Resistive heating (boat/coil) or electron beam heating.
Evaporation Process Material heated to vaporize, forming a vapor cloud in the vacuum chamber.
Vapor Deposition Vapor travels in a straight line, condensing onto the substrate.
Applications Electronics, optics, decorative coatings (e.g., aluminum, gold, silver).
Advantages High purity, strong adhesion, cost-effective.
Limitations Limited to materials that vaporize without decomposition.

Interested in thermal evaporation for your thin film needs? Contact us today to learn more!

Related Products

Evaporation Crucible for Organic Matter

Evaporation Crucible for Organic Matter

An evaporation crucible for organic matter, referred to as an evaporation crucible, is a container for evaporating organic solvents in a laboratory environment.

Evaporation Boat for Organic Matter

Evaporation Boat for Organic Matter

The evaporation boat for organic matter is an important tool for precise and uniform heating during the deposition of organic materials.

0.5-4L Rotary Evaporator Rotavapor Rotovap for Extraction Molecular Cooking and Laboratory Distillation

0.5-4L Rotary Evaporator Rotavapor Rotovap for Extraction Molecular Cooking and Laboratory Distillation

Efficiently separate "low boiling" solvents with a 0.5-4L rotary evaporator. Designed with high-grade materials, Telfon+Viton vacuum sealing, and PTFE valves for contamination-free operation.

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible and Evaporation Boat

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible and Evaporation Boat

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible enables precise co-deposition of various materials. Its controlled temperature and water-cooled design ensure pure and efficient thin film deposition.

High Purity Pure Graphite Crucible for Electron Beam Evaporation

High Purity Pure Graphite Crucible for Electron Beam Evaporation

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.

E Beam Crucibles Electron Gun Beam Crucible for Evaporation

E Beam Crucibles Electron Gun Beam Crucible for Evaporation

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

Ceramic Evaporation Boat Set Alumina Crucible for Laboratory Use

Ceramic Evaporation Boat Set Alumina Crucible for Laboratory Use

It can be used for vapor deposition of various metals and alloys. Most metals can be evaporated completely without loss. Evaporation baskets are reusable.1

High Purity Pure Graphite Crucible for Evaporation

High Purity Pure Graphite Crucible for Evaporation

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

2-5L Rotary Evaporator Rotavapor Rotovap Distillation for Extraction Molecular Cooking Gastronomy and Laboratory Rotary Vacuum Evaporator Price

2-5L Rotary Evaporator Rotavapor Rotovap Distillation for Extraction Molecular Cooking Gastronomy and Laboratory Rotary Vacuum Evaporator Price

Efficiently remove low boiling solvents with the KT 2-5L Rotary Evaporator. Perfect for chemical labs in the pharmaceutical, chemical, and biological industries.

0.5-1L Rotary Evaporator Rotavapor Rotovap for Extraction Molecular Cooking and Laboratory Distillation

0.5-1L Rotary Evaporator Rotavapor Rotovap for Extraction Molecular Cooking and Laboratory Distillation

Looking for a reliable and efficient rotary evaporator? Our 0.5-1L rotary evaporator uses constant temperature heating and thin film evaporating to implement a range of operations, including solvent removal and separation. With high-grade materials and safety features, it's perfect for labs in pharmaceutical, chemical, and biological industries.

Vacuum Hot Press Furnace Heated Vacuum Press Machine Tube Furnace

Vacuum Hot Press Furnace Heated Vacuum Press Machine Tube Furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

Inclined Rotary Plasma Enhanced Chemical Vapor Deposition PECVD Equipment Tube Furnace Machine

Inclined Rotary Plasma Enhanced Chemical Vapor Deposition PECVD Equipment Tube Furnace Machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Vacuum Hot Press Furnace Machine Heated Vacuum Press

Vacuum Hot Press Furnace Machine Heated Vacuum Press

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

Aluminized Ceramic Evaporation Boat for Thin Film Deposition

Aluminized Ceramic Evaporation Boat for Thin Film Deposition

Vessel for depositing thin films; has an aluminum-coated ceramic body for improved thermal efficiency and chemical resistance. making it suitable for various applications.

Molecular Distillation Equipment Short Path Molecular Distillation

Molecular Distillation Equipment Short Path Molecular Distillation

Purify and concentrate natural products with ease using our molecular distillation process. With high vacuum pressure, low operating temperatures, and short heating times, preserve the natural quality of your materials while achieving excellent separation. Discover the advantages today!

HFCVD Machine System Equipment for Drawing Die Nano-Diamond Coating

HFCVD Machine System Equipment for Drawing Die Nano-Diamond Coating

The nano-diamond composite coating drawing die uses cemented carbide (WC-Co) as the substrate, and uses the chemical vapor phase method ( CVD method for short ) to coat the conventional diamond and nano-diamond composite coating on the surface of the inner hole of the mold.

Vacuum Heat Treat and Pressure Sintering Furnace for High Temperature Applications

Vacuum Heat Treat and Pressure Sintering Furnace for High Temperature Applications

Vacuum pressure sintering furnaces are designed for high temperature hot pressing applications in metal and ceramic sintering. Its advanced features ensure precise temperature control, reliable pressure maintenance, and a robust design for seamless operation.

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition RF PECVD

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition RF PECVD

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

Vacuum Heat Treat Furnace and Levitation Induction Melting Furnace

Vacuum Heat Treat Furnace and Levitation Induction Melting Furnace

Experience precise melting with our Vacuum Levitation Melting Furnace. Ideal for high melting point metals or alloys, with advanced technology for effective smelting. Order now for high-quality results.

Vacuum Induction Melting Furnace Arc Melting Furnace

Vacuum Induction Melting Furnace Arc Melting Furnace

Get precise alloy composition with our Vacuum Induction Melting Furnace. Ideal for aerospace, nuclear energy, and electronic industries. Order now for effective smelting and casting of metals and alloys.

Molybdenum Vacuum Heat Treat Furnace

Molybdenum Vacuum Heat Treat Furnace

Discover the benefits of a high-configuration molybdenum vacuum furnace with heat shield insulation. Ideal for high-purity, vacuum environments like sapphire crystal growth and heat treatment.

Electron Beam Evaporation Coating Tungsten Crucible and Molybdenum Crucible for High Temperature Applications

Electron Beam Evaporation Coating Tungsten Crucible and Molybdenum Crucible for High Temperature Applications

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.


Leave Your Message