Knowledge What Should Heating Elements Be Made Of? 4 Key Properties to Consider
Author avatar

Tech Team · Kintek Solution

Updated 1 week ago

What Should Heating Elements Be Made Of? 4 Key Properties to Consider

Heating elements are crucial components in various heating devices. They convert electrical energy into heat through resistance heating.

The choice of material for a heating element is critical. It depends on several key properties such as high resistivity, high melting point, low temperature coefficient, and resistance to oxidation.

The most commonly used materials for heating elements are alloys of nickel and chromium. Specifically, Nichrome (80% Nickel, 20% Chromium) and Ni-Cr-Fe alloys are favored.

These materials are chosen for their ability to withstand high temperatures and resist oxidation. This makes them suitable for a wide range of applications from household appliances to industrial furnaces.

4 Key Properties of Ideal Heating Element Materials

What Should Heating Elements Be Made Of? 4 Key Properties to Consider

1. High Resistivity

Explanation: The material for a heating element should have high specific resistance. This property allows for the generation of sufficient heat with a relatively small length of wire. It makes the element efficient and compact.

Application: Materials like Nichrome, which has high resistivity, are used in toasters, hair dryers, and industrial furnaces.

2. High Melting Point

Explanation: A high melting point ensures that the heating element can operate at high temperatures without melting or degrading.

Application: Nickel and chromium alloys, which have melting points up to 1,150°C, are ideal for high-temperature applications such as industrial furnaces.

3. Low Temperature Coefficient

Explanation: A low temperature coefficient means that the resistance of the material changes little with temperature variations. This stability prevents fluctuations in starting current and ensures consistent performance.

Application: Nichrome and Ni-Cr-Fe alloys have low temperature coefficients, making them suitable for precision heating applications.

4. Resistance to Oxidation

Explanation: The material should withstand high temperatures without oxidizing. This would lead to frequent replacements and reduced lifespan.

Application: Nichrome forms an adherent layer of chromium oxide when heated. This protects the underlying material from oxidation, making it durable in high-temperature environments.

Types of Heating Elements

Metal Type

Explanation: Metal heating elements, such as Nichrome wires and ribbons, are commonly used in various heating devices due to their high resistivity and resistance to oxidation.

Application: Used in toasters, hair dryers, furnaces, and other heating appliances.

Non-Metal Type

Explanation: Non-metal elements like graphite are used in specific applications where their properties, such as low price and large radiation area, are beneficial.

Application: Graphite heating elements are used in high-temperature applications like vacuum furnaces.

Selection Criteria for Heating Elements

Explanation: The selection of a heating element involves choosing a material and cross-section that provides the proper electrical resistance to generate the desired heat output. The cross-sectional area affects the resistance, with larger areas lowering resistance and allowing more current to flow.

Application: For low-power applications, thin ribbons are used, while higher heat output applications require thicker elements.

Oxygen Sensitivity

Explanation: Some materials, like tungsten and graphite, are sensitive to oxygen and must be protected from it to prevent oxidation and degradation.

Application: In vacuum furnaces, materials like graphite are used but must be handled carefully to avoid oxidation.

In summary, the choice of heating element material is crucial for the performance and longevity of heating devices. Materials like Nichrome and Ni-Cr-Fe alloys are preferred for their high resistivity, high melting point, low temperature coefficient, and resistance to oxidation. This makes them suitable for a wide range of heating applications from household appliances to industrial furnaces.

Continue Exploring, Consult Our Experts

Discover how the right heating elements can elevate your efficiency and performance! KINTEK SOLUTION's premium selection of heating elements, including durable Nichrome and Ni-Cr-Fe alloys, ensures unmatched temperature control in your applications. Take advantage of our expert knowledge and innovative solutions to transform your heating systems. Let us help you find the perfect match for your needs. Contact us today for a tailored consultation and unlock the potential of your equipment!

Related Products

silicon carbide(SiC) heating element

silicon carbide(SiC) heating element

Experience the advantages of Silicon Carbide (SiC) Heating Element: Long service life, high corrosion and oxidation resistance, fast heating speed, and easy maintenance. Learn more now!

molybdenum disilicide (MoSi2) heating element

molybdenum disilicide (MoSi2) heating element

Discover the power of Molybdenum Disilicide (MoSi2) Heating Element for high-temperature resistance. Unique oxidation resistance with stable resistance value. Learn more about its benefits now!

Thermally evaporated tungsten wire

Thermally evaporated tungsten wire

It has a high melting point, thermal and electrical conductivity, and corrosion resistance. It is a valuable material for high temperature, vacuum and other industries.

Alumina (Al2O3) Furnace Tube - High Temperature

Alumina (Al2O3) Furnace Tube - High Temperature

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

Aluminum Oxide (Al2O3) Ceramics Heat Sink - Insulation

Aluminum Oxide (Al2O3) Ceramics Heat Sink - Insulation

The hole structure of the ceramic heat sink increases the heat dissipation area in contact with the air, which greatly enhances the heat dissipation effect, and the heat dissipation effect is better than that of super copper and aluminum.

Nickel Chromium Alloy (NiCr) Sputtering Target / Powder / Wire / Block / Granule

Nickel Chromium Alloy (NiCr) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Nickel Chromium Alloy (NiCr) materials for your lab needs at affordable prices. Choose from a wide range of shapes and sizes, including sputtering targets, coatings, powders, and more. Tailored to suit your unique requirements.

Boron Nitride (BN) Ceramic Plate

Boron Nitride (BN) Ceramic Plate

Boron nitride (BN) ceramic plates do not use aluminum water to wet, and can provide comprehensive protection for the surface of materials that directly contact molten aluminum, magnesium, zinc alloys and their slag.

Chromium Nickel Alloy (CrNi) Sputtering Target / Powder / Wire / Block / Granule

Chromium Nickel Alloy (CrNi) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Chromium Nickel Alloy (CrNi) materials for your lab? Look no further than our expertly crafted and tailored options. Explore our wide range of sizes and specifications, including sputtering targets, coatings, powders, and more. Shop now!

Alumina (Al2O3) Ceramic Rod-Insulated

Alumina (Al2O3) Ceramic Rod-Insulated

Insulated alumina rod is a fine ceramic material. Alumina rods have excellent electrical insulating properties, high chemical resistance and low thermal expansion.

Vacuum molybdenum wire sintering furnace

Vacuum molybdenum wire sintering furnace

A vacuum molybdenum wire sintering furnace is a vertical or bedroom structure, which is suitable for withdrawal, brazing, sintering and degassing of metal materials under high vacuum and high temperature conditions. It is also suitable for dehydroxylation treatment of quartz materials.

Iron Nickel Alloy (FeNi) Sputtering Target / Powder / Wire / Block / Granule

Iron Nickel Alloy (FeNi) Sputtering Target / Powder / Wire / Block / Granule

Discover affordable Iron Nickel Alloy materials tailored to your lab's needs. Our FeNi products come in various sizes and shapes, from sputtering targets to powders and ingots. Order now!

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

High Purity Nickel (Ni) Sputtering Target / Powder / Wire / Block / Granule

High Purity Nickel (Ni) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Nickel (Ni) materials for laboratory use? Look no further than our customizable selection! With competitive prices and a range of sizes and shapes to choose from, we have everything you need to meet your unique requirements.

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Alumina oxide protective tube, also known as high temperature resistant corundum tube or thermocouple protection tube, is a ceramic tube mainly made of alumina (aluminum oxide).

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible (BN Crucible)

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible (BN Crucible)

High-purity and smooth conductive boron nitride crucible for electron beam evaporation coating, with high temperature and thermal cycling performance.

Alumina Ceramic Screw - High Quality Insulation And High Temperature Resistance

Alumina Ceramic Screw - High Quality Insulation And High Temperature Resistance

Alumina ceramic screws are fastening components made of 99.5% alumina, ideal for extreme applications requiring excellent thermal resistance, electrical insulation and chemical resistance.

Nickel Niobium Alloy (NiNb) Sputtering Target / Powder / Wire / Block / Granule

Nickel Niobium Alloy (NiNb) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Nickel Niobium Alloy (NiNb) materials for your laboratory needs. We offer tailored purities, shapes, and sizes, plus sputtering targets, coatings, powders, and more. Explore our range now!

Molybdenum Vacuum furnace

Molybdenum Vacuum furnace

Discover the benefits of a high-configuration molybdenum vacuum furnace with heat shield insulation. Ideal for high-purity, vacuum environments like sapphire crystal growth and heat treatment.

Boron Nitride (BN) Ceramics-Conductive Composite

Boron Nitride (BN) Ceramics-Conductive Composite

Due to the characteristics of boron nitride itself, the dielectric constant and dielectric loss are very small, so it is an ideal electrical insulating material.

304 stainless steel strip foil 20um thick battery test

304 stainless steel strip foil 20um thick battery test

304 is a versatile stainless steel, which is widely used in the production of equipment and parts that require good overall performance (corrosion resistance and formability).

Nickel Foam

Nickel Foam

Nickel foam is a high-tech deep-processing, and the metal nickel is made into a foam sponge, which has a three-dimensional full-through mesh structure.

High Purity Nickel Oxide (Ni2O3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Nickel Oxide (Ni2O3) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Nickel Oxide materials for your laboratory needs at affordable prices. Our tailored solutions fit your specific requirements. Discover a range of shapes, sizes, and specifications for sputtering targets, coatings, powders, and more.

1700℃ Muffle furnace

1700℃ Muffle furnace

Get superior heat control with our 1700℃ Muffle Furnace. Equipped with intelligent temperature microprocessor, TFT touch screen controller & advanced insulation materials for precise heating up to 1700C. Order now!

High temperature debinding and pre sintering furnace

High temperature debinding and pre sintering furnace

KT-MD High temperature debinding and pre-sintering furnace for ceramic materials with various molding processes. Ideal for electronic components such as MLCC and NFC.

Hexagonal Boron Nitride(HBN) Thermocouple Protection Tube

Hexagonal Boron Nitride(HBN) Thermocouple Protection Tube

Hexagonal boron nitride ceramics is an emerging industrial material. Because of its similar structure to graphite and many similarities in performance, it is also called "white graphite".


Leave Your Message