Knowledge How Long Does a Heating Element Last? 4 Key Factors to Consider
Author avatar

Tech Team · Kintek Solution

Updated 2 months ago

How Long Does a Heating Element Last? 4 Key Factors to Consider

The lifespan of a heating element can vary significantly depending on several factors.

These factors include the material of the element, operating conditions, maintenance, and the design of the furnace.

Generally, the life of a heating element is influenced by its resistance to grounding, the environment in which it operates, the integrity of its oxide layer, and the watt density it experiences.

4 Key Factors Influencing the Lifespan of Heating Elements

How Long Does a Heating Element Last? 4 Key Factors to Consider

1. Resistance to Grounding

Regular checks of the heating element's resistance to grounding are crucial.

This is especially important in furnaces used for specific processes like low-pressure vacuum carburizing.

The resistance should typically be between 90 – 100 ohms.

A drop to 10 ohms or less usually indicates failure.

Over time, molybdenum elements and their insulators can metalize, reducing their resistance and leading to eventual failure.

2. Environmental Conditions

The heating element's life is also affected by the environment in which it operates.

It should be used in conditions where the relative humidity does not exceed 85%.

There should be no presence of conductive dust, explosive gas, or corrosive gas.

When heating materials like grease, the release of volatile gases can corrode the heating elements, leading to a shorter lifespan.

Proper sealing or ventilation of the container during heating can help prevent this.

3. Oxide Layer Integrity

The oxide layer on the surface of the heating element is critical for its longevity.

Any damage to this layer can significantly shorten the element's life.

Each shutdown of the furnace can damage the oxide layer, so it is recommended to avoid unnecessary shutdowns after the furnace has been started.

4. Watt Density

The watt density, or the power density, of the heating element is another key factor.

This is the amount of power per unit area from which the heat is radiated.

A higher watt density can lead to higher temperatures and potentially shorter element life.

To extend the life of the heating elements, using a lower watt density by incorporating more elements in the furnace can be beneficial.

However, this must be balanced against the increased cost and space requirements.

Continue Exploring, Consult Our Experts

Discover the longevity and efficiency of your heating elements with KINTEK products!

Our advanced heating elements are designed to withstand the rigors of various operating conditions.

Trust in KINTEK for reliable resistance to grounding, robust oxide layer protection, and optimal watt density solutions.

Maximize your furnace's efficiency with KINTEK's top-tier heating elements today!

Related Products

silicon carbide(SiC) heating element

silicon carbide(SiC) heating element

Experience the advantages of Silicon Carbide (SiC) Heating Element: Long service life, high corrosion and oxidation resistance, fast heating speed, and easy maintenance. Learn more now!

molybdenum disilicide (MoSi2) heating element

molybdenum disilicide (MoSi2) heating element

Discover the power of Molybdenum Disilicide (MoSi2) Heating Element for high-temperature resistance. Unique oxidation resistance with stable resistance value. Learn more about its benefits now!

Continuous working electric heating pyrolysis furnace plant

Continuous working electric heating pyrolysis furnace plant

Efficiently calcine and dry bulk powder and lump fluid materials with an electric heating rotary furnace. Ideal for processing lithium ion battery materials and more.

Split multi heating zone rotary tube furnace

Split multi heating zone rotary tube furnace

Multi zone rotary furnace for high-precision temperature control with 2-8 independent heating zones. Ideal for lithium ion battery electrode materials and high-temperature reactions. Can work under vacuum and controlled atmosphere.

Heating Circulator High temperature constant temperature reaction bath

Heating Circulator High temperature constant temperature reaction bath

Efficient and reliable, KinTek KHB Heating Circulator is perfect for your lab needs. With a max. heating temperature of up to 300℃, it features accurate temperature control and fast heating.

Electric heating blast drying oven

Electric heating blast drying oven

The desktop fast autoclave sterilizer is a compact and reliable device used for rapid sterilization of medical, pharmaceutical, and research items.

Vacuum sealed continuous working rotary tube furnace

Vacuum sealed continuous working rotary tube furnace

Experience efficient material processing with our vacuum-sealed rotary tube furnace. Perfect for experiments or industrial production, equipped with optional features for controlled feeding and optimized results. Order now.

1400℃ Muffle furnace

1400℃ Muffle furnace

Get precise high-temperature control up to 1500℃ with KT-14M Muffle furnace. Equipped with a smart touch screen controller and advanced insulation materials.

1700℃ Muffle furnace

1700℃ Muffle furnace

Get superior heat control with our 1700℃ Muffle Furnace. Equipped with intelligent temperature microprocessor, TFT touch screen controller & advanced insulation materials for precise heating up to 1700C. Order now!

Hydraulic Heated Lab Pellet Press 24T / 30T / 60T

Hydraulic Heated Lab Pellet Press 24T / 30T / 60T

Looking for a reliable Hydraulic Heated Lab Press? Our 24T / 40T model is perfect for material research labs, pharmacy, ceramics, and more. With a small footprint and the ability to work inside a vacuum glove box, it's the efficient and versatile solution for your sample preparation needs.

5L Heating Chilling Circulator High temperature and low temperature constant temperature reaction bath

5L Heating Chilling Circulator High temperature and low temperature constant temperature reaction bath

KinTek KCBH 5L Heating Chilling Circulator - Ideal for labs and industrial conditions with multi-functional design and reliable performance.

1200℃ Muffle furnace

1200℃ Muffle furnace

Upgrade your lab with our 1200℃ Muffle Furnace. Achieve fast, precise heating with Japan alumina fibers and Molybdenum coils. Features TFT touch screen controller for easy programming and data analysis. Order now!

1800℃ Muffle furnace

1800℃ Muffle furnace

KT-18 muffle furnace with Japan Al2O3 polycrystalline fibe and Silicon Molybdenum heating element, up to 1900℃, PID temperature control and 7" smart touch screen. Compact design, low heat loss, and high energy efficiency. Safety interlock system and versatile functions.

laboratory vacuum tilt rotary tube furnace

laboratory vacuum tilt rotary tube furnace

Discover the versatility of Laboratory Rotary Furnace: Ideal for calcination, drying, sintering, and high-temperature reactions. Adjustable rotating and tilting functions for optimal heating. Suitable for vacuum and controlled atmosphere environments. Learn more now!

Bottom lifting furnace

Bottom lifting furnace

Efficiently produce batches with excellent temperature uniformity using our Bottom Lifting Furnace. Features two electric lifting stages and advanced temperature control up to 1600℃.

Multi zone tube furnace

Multi zone tube furnace

Experience precise, efficient thermal testing with our Multi Zone Tube Furnace. Independent heating zones and temperature sensors allow for controlled high-temperature gradient heating fields. Order now for advanced thermal analysis!

20L Heating Chilling Circulator High temperature and low temperature constant temperature reaction bath

20L Heating Chilling Circulator High temperature and low temperature constant temperature reaction bath

Maximize lab productivity with KinTek KCBH 20L Heating Chilling Circulator. Its all-in-one design offers reliable heating, chilling, and circulating functions for industrial and lab use.

Vertical tube furnace

Vertical tube furnace

Elevate your experiments with our Vertical Tube Furnace. Versatile design allows for operation under various environments and heat treatment applications. Order now for precise results!

1400℃ Controlled atmosphere furnace

1400℃ Controlled atmosphere furnace

Achieve precise heat treatment with KT-14A controlled atmosphere furnace. Vacuum sealed with a smart controller, it's ideal for lab and industrial use up to 1400℃.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

Vacuum induction melting furnace Arc Melting Furnace

Vacuum induction melting furnace Arc Melting Furnace

Get precise alloy composition with our Vacuum Induction Melting Furnace. Ideal for aerospace, nuclear energy, and electronic industries. Order now for effective smelting and casting of metals and alloys.

10L Heating Chilling Circulator High temperature and low temperature constant temperature reaction bath

10L Heating Chilling Circulator High temperature and low temperature constant temperature reaction bath

Experience efficient lab performance with KinTek KCBH 10L Heating Chilling Circulator. Its all-in-one design offers reliable heating, chilling, and circulating functions for industrial and lab use.

High Thermal Conductivity Film Graphitization Furnace

High Thermal Conductivity Film Graphitization Furnace

The high thermal conductivity film graphitization furnace has uniform temperature, low energy consumption and can operate continuously.

Alumina (Al2O3) Furnace Tube - High Temperature

Alumina (Al2O3) Furnace Tube - High Temperature

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

Ultra-high temperature graphitization furnace

Ultra-high temperature graphitization furnace

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials.


Leave Your Message