Knowledge What is the Carbon Content of Carburizing? (5 Key Points Explained)
Author avatar

Tech Team · Kintek Solution

Updated 1 month ago

What is the Carbon Content of Carburizing? (5 Key Points Explained)

Carburizing is a process that significantly increases the carbon content in the surface layer of low-carbon steels. This process is essential for improving the mechanical properties of the steel, such as hardness and wear resistance.

What is the Carbon Content of Carburizing? (5 Key Points Explained)

What is the Carbon Content of Carburizing? (5 Key Points Explained)

1. Initial Steel Composition

The steels commonly used for carburizing, like 12L14, 1018, and 8620, have low initial carbon contents ranging from 0.05% to 0.3%. This low carbon content makes the steel ductile and easy to form but not hard enough for applications requiring high wear resistance or fatigue strength.

2. Process of Carburizing

During carburizing, the steel parts are heated to high temperatures, typically between 900°C to 1000°C or 1200F to 1600F, in a carbon-rich atmosphere or vacuum. This environment allows carbon to diffuse into the surface of the steel, enriching it with carbon. The process is controlled to achieve a carbon content in the surface layer that ranges from 0.8% to 1.2%, which is near the eutectoid composition of steel (0.8% carbon).

3. Purpose of Increased Carbon Content

The increased carbon content in the surface layer transforms the microstructure, promoting the formation of harder phases like martensite upon subsequent quenching. This results in a hard, wear-resistant surface layer while maintaining a softer, more ductile core. This combination is ideal for many mechanical applications where parts need to withstand high stresses and abrasions.

4. Control and Optimization

The carbon potential in the furnace atmosphere during carburizing must be carefully controlled. Incorrect levels can lead to issues such as retained austenite, grain boundary oxidation, and surface cracking. These problems can degrade the mechanical properties of the treated steel.

5. Environmental and Operational Considerations

Modern methods like vacuum (low pressure) carburizing offer advantages such as reduced environmental impact (no CO2 emissions) and improved control over the carburizing process. This method uses acetylene as a carburizing gas in a vacuum furnace, which can lead to more uniform carbon distribution and better mechanical properties.

Continue exploring, consult our experts

Ready to enhance your steel components? Consult with our experts to discover how our state-of-the-art carburizing solutions can elevate your steel components to new levels of wear resistance and fatigue strength. Trust in KINTEK SOLUTION for superior carburizing services that deliver results that stand the test of time. Experience the difference with KINTEK SOLUTION – where innovation meets integrity in every transformation.

Related Products

Silicon Carbide (SIC) Ceramic Plate

Silicon Carbide (SIC) Ceramic Plate

Silicon nitride (sic) ceramic is an inorganic material ceramic that does not shrink during sintering. It is a high-strength, low-density, high-temperature-resistant covalent bond compound.

High Purity Carbon (C) Sputtering Target / Powder / Wire / Block / Granule

High Purity Carbon (C) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Carbon (C) materials for your laboratory needs? Look no further! Our expertly produced and tailored materials come in a variety of shapes, sizes, and purities. Choose from sputtering targets, coating materials, powders, and more.

Silicon Carbide (SIC) Ceramic Sheet Wear-Rresistant

Silicon Carbide (SIC) Ceramic Sheet Wear-Rresistant

Silicon carbide (sic) ceramic sheet is composed of high-purity silicon carbide and ultra-fine powder, which is formed by vibration molding and high-temperature sintering.

silicon carbide(SiC) heating element

silicon carbide(SiC) heating element

Experience the advantages of Silicon Carbide (SiC) Heating Element: Long service life, high corrosion and oxidation resistance, fast heating speed, and easy maintenance. Learn more now!

Tungsten Carbide (WC) Sputtering Target / Powder / Wire / Block / Granule

Tungsten Carbide (WC) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Tungsten Carbide (WC) materials for your lab? Our expertly tailored products come in various shapes and sizes, from sputtering targets to nanometer powders. Shop now for quality materials that fit your unique needs.

Molybdenum Carbide (Mo2C) Sputtering Target / Powder / Wire / Block / Granule

Molybdenum Carbide (Mo2C) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Molybdenum Carbide (Mo2C) materials for your lab? Look no further! Our expertly-produced materials come in a range of purities, shapes, and sizes to meet your unique needs. Shop sputtering targets, coatings, powders, and more today.

Titanium Carbide (TiC) Sputtering Target / Powder / Wire / Block / Granule

Titanium Carbide (TiC) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Titanium Carbide (TiC) materials for your lab at affordable prices. We offer a wide range of shapes and sizes, including sputtering targets, powders, and more. Tailored to your specific needs.

Drawing die nano-diamond coating HFCVD Equipment

Drawing die nano-diamond coating HFCVD Equipment

The nano-diamond composite coating drawing die uses cemented carbide (WC-Co) as the substrate, and uses the chemical vapor phase method ( CVD method for short ) to coat the conventional diamond and nano-diamond composite coating on the surface of the inner hole of the mold.

Boron Carbide (B4C) Sputtering Target / Powder / Wire / Block / Granule

Boron Carbide (B4C) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Boron Carbide (B4C) materials for your laboratory needs at affordable prices. We offer tailored materials of different purities, shapes, and sizes to suit your unique requirements, including sputtering targets, coatings, particles, and more.

Silicon Carbide (SiC) Sputtering Target / Powder / Wire / Block / Granule

Silicon Carbide (SiC) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Silicon Carbide (SiC) materials for your lab? Look no further! Our expert team produces and tailors SiC materials to your exact needs at reasonable prices. Browse our range of sputtering targets, coatings, powders, and more today.

CVD Diamond coating

CVD Diamond coating

CVD Diamond Coating: Superior Thermal Conductivity, Crystal Quality, and Adhesion for Cutting Tools, Friction, and Acoustic Applications

Cutting Tool Blanks

Cutting Tool Blanks

CVD Diamond Cutting Tools: Superior Wear Resistance, Low Friction, High Thermal Conductivity for Non-Ferrous Materials, Ceramics, Composites Machining

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon nitride plate is a commonly used ceramic material in the metallurgical industry due to its uniform performance at high temperatures.

Metal Alloy Grinding Jar With Balls

Metal Alloy Grinding Jar With Balls

Grind and mill with ease using metal alloy grinding jars with balls. Choose from 304/316L stainless steel or tungsten carbide and optional liner materials. Compatible with various mills and features optional functions.

Continuous graphitization furnace

Continuous graphitization furnace

High-temperature graphitization furnace is a professional equipment for graphitization treatment of carbon materials. It is a key equipment for the production of high-quality graphite products. It has high temperature, high efficiency and uniform heating. It is suitable for various high-temperature treatments and graphitization treatments. It is widely used in metallurgy, electronics, aerospace, etc. industry.

Horizontal high temperature graphitization furnace

Horizontal high temperature graphitization furnace

Horizontal Graphitization Furnace: This type of furnace is designed with the heating elements placed horizontally, allowing for uniform heating of the sample. It's well-suited for graphitizing large or bulky samples that require precise temperature control and uniformity.

Bottom discharge graphitization furnace for carbon materials

Bottom discharge graphitization furnace for carbon materials

Bottom-out graphitization furnace for carbon materials, ultra-high temperature furnace up to 3100°C, suitable for graphitization and sintering of carbon rods and carbon blocks. Vertical design, bottom discharging, convenient feeding and discharging, high temperature uniformity, low energy consumption, good stability, hydraulic lifting system, convenient loading and unloading.

Ultra-high temperature graphitization furnace

Ultra-high temperature graphitization furnace

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials.

Electric activated carbon regeneration furnace

Electric activated carbon regeneration furnace

Revitalize your activated carbon with KinTek's Electric Regeneration Furnace. Achieve efficient and cost-effective regeneration with our highly automated rotary kiln and intelligent thermal controller.

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace, a tailored solution for universities and research institutions, with high heating efficiency, user-friendliness, and precise temperature control.

Vertical high temperature graphitization furnace

Vertical high temperature graphitization furnace

Vertical high temperature graphitization furnace for carbonization and graphitization of carbon materials up to 3100℃.Suitable for shaped graphitization of carbon fiber filaments and other materials sintered in a carbon environment.Applications in metallurgy, electronics, and aerospace for producing high-quality graphite products like electrodes and crucibles.

Hydrogen atmosphere furnace

Hydrogen atmosphere furnace

KT-AH Hydrogen atmosphere furnace - induction gas furnace for sintering/annealing with built-in safety features, dual housing design, and energy-saving efficiency. Ideal for lab and industrial use.

1200℃ Controlled atmosphere furnace

1200℃ Controlled atmosphere furnace

Discover our KT-12A Pro Controlled atmosphere furnace - high precision, heavy duty vacuum chamber, versatile smart touch screen controller, and excellent temperature uniformity up to 1200C. Ideal for both laboratory and industrial application.

Large Vertical Graphitization Furnace

Large Vertical Graphitization Furnace

A large vertical high-temperature graphitization furnace is a type of industrial furnace used for the graphitization of carbon materials, such as carbon fiber and carbon black. It is a high-temperature furnace that can reach temperatures of up to 3100°C.

Alumina Ceramic Saggar - Fine Corundum

Alumina Ceramic Saggar - Fine Corundum

Alumina sagger products have the characteristics of high temperature resistance, good thermal shock stability, small expansion coefficient, anti-stripping, and good anti-powdering performance.


Leave Your Message