Knowledge What is the Mechanism of SPS? (4 Key Stages Explained)
Author avatar

Tech Team · Kintek Solution

Updated 3 months ago

What is the Mechanism of SPS? (4 Key Stages Explained)

Spark Plasma Sintering (SPS) is a sintering technique that involves the simultaneous application of uniaxial pressure and high-intensity, low-voltage, pulsed current.

The mechanism of SPS can be summarized into four main stages: vacuum creation, pressure application, resistance heating, and cooling.

During the process, a local high-temperature state is generated momentarily by a spark discharge between particles, leading to accelerated sintering densification and the formation of a high-quality sintered body.

What is the Mechanism of SPS? (4 Key Stages Explained)

What is the Mechanism of SPS? (4 Key Stages Explained)

1. Vacuum Creation

The first stage of SPS involves removing gases and creating a vacuum.

This step is crucial to prevent any gas inclusions within the sintered material, which could compromise its integrity and properties.

By evacuating the atmosphere, the process ensures that the subsequent stages occur in a controlled and clean environment.

2. Pressure Application

In the second stage, pressure is applied.

This uniaxial pressure is a key component of the SPS process, as it helps in the consolidation of the material particles.

The pressure aids in the reduction of the interparticle distance and promotes the formation of necks between particles, which is essential for sintering.

3. Resistance Heating

The third stage involves resistance heating, where the material is heated by a current flowing directly through it.

The pulsed DC current generates Joule heat within the material, leading to rapid and uniform heating.

This heating mechanism is distinct from conventional furnace heating, as it allows for precise control over the temperature and heating rate.

The high-intensity, low-voltage pulses also create a spark discharge at the contact points between particles, generating a local high-temperature state that facilitates the sintering process.

4. Cooling

The final stage is cooling, where the sintered material is allowed to cool down under controlled conditions.

This stage is important to prevent any unwanted phase transformations or cracking that could occur if the material cools too quickly.

The SPS process is believed to involve several unique phenomena, such as the self-heating effect generated by the discharge between powder particles and the strengthening of bulk and grain boundary diffusion.

These effects contribute to the acceleration of the sintering densification process, allowing for the production of high-quality sintered bodies at lower temperatures and in a relatively short time.

Despite the widespread use of SPS, there is still ongoing research to fully understand the intermediate processes of sintering and to clarify the role of plasma and electric discharges during the process.

The term "Spark Plasma Sintering" itself has been disputed, as the presence of plasma has not been unequivocally proven.

Nevertheless, SPS remains a valuable technique for the sintering of various materials, offering advantages in terms of speed, efficiency, and control over the sintering process.

Continue exploring, consult our experts

Discover the future of sintering technology with KINTEK SOLUTION.

Our advanced Spark Plasma Sintering (SPS) systems deliver unparalleled speed and efficiency, offering precise control over sintering processes and producing high-quality materials with exceptional integrity.

Experience the power of local high-temperature sintering densification, and elevate your research and production capabilities to new heights.

Explore KINTEK SOLUTION’s SPS solutions today and unlock the potential of your materials.

Related Products

Vacuum pressure sintering furnace

Vacuum pressure sintering furnace

Vacuum pressure sintering furnaces are designed for high temperature hot pressing applications in metal and ceramic sintering. Its advanced features ensure precise temperature control, reliable pressure maintenance, and a robust design for seamless operation.

Spark plasma sintering furnace SPS furnace

Spark plasma sintering furnace SPS furnace

Discover the benefits of Spark Plasma Sintering Furnaces for rapid, low-temperature material preparation. Uniform heating, low cost & eco-friendly.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

Vacuum tube hot press furnace

Vacuum tube hot press furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

9MPa air pressure sintering furnace

9MPa air pressure sintering furnace

The air pressure sintering furnace is a high-tech equipment commonly used for the sintering of advanced ceramic materials. It combines vacuum sintering and pressure sintering techniques to achieve high-density and high-strength ceramics.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

High temperature debinding and pre sintering furnace

High temperature debinding and pre sintering furnace

KT-MD High temperature debinding and pre-sintering furnace for ceramic materials with various molding processes. Ideal for electronic components such as MLCC and NFC.

Small vacuum tungsten wire sintering furnace

Small vacuum tungsten wire sintering furnace

The small vacuum tungsten wire sintering furnace is a compact experimental vacuum furnace specially designed for universities and scientific research institutes. The furnace features a CNC welded shell and vacuum piping to ensure leak-free operation. Quick-connect electrical connections facilitate relocation and debugging, and the standard electrical control cabinet is safe and convenient to operate.

Vacuum Induction Melting Spinning System Arc Melting Furnace

Vacuum Induction Melting Spinning System Arc Melting Furnace

Develop metastable materials with ease using our Vacuum Melt Spinning System. Ideal for research and experimental work with amorphous and microcrystalline materials. Order now for effective results.

600T vacuum induction hot press furnace

600T vacuum induction hot press furnace

Discover the 600T Vacuum Induction Hot Press Furnace, designed for high-temperature sintering experiments in vacuum or protected atmospheres. Its precise temperature and pressure control, adjustable working pressure, and advanced safety features make it ideal for nonmetal materials, carbon composites, ceramics, and metal powders.

Warm iostatic press for solid state battery research

Warm iostatic press for solid state battery research

Discover the advanced Warm Isostatic Press (WIP) for semiconductor lamination. Ideal for MLCC, hybrid chips, and medical electronics. Enhance strength and stability with precision.

Split automatic heated lab pellet press 30T / 40T

Split automatic heated lab pellet press 30T / 40T

Discover our split automatic heated lab press 30T/40T for precise sample preparation in material research, pharmacy, ceramics, and electronics industries. With a small footprint and heating up to 300°C, it's perfect for processing under vacuum environment.

Zinc sulfide (ZnS) window

Zinc sulfide (ZnS) window

Optics Zinc Sulphide (ZnS) Windows have an excellent IR transmission range between 8-14 microns.Excellent mechanical strength and chemical inertness for harsh environments (harder than ZnSe Windows)

Zinc Sulfide (ZnS) Sputtering Target / Powder / Wire / Block / Granule

Zinc Sulfide (ZnS) Sputtering Target / Powder / Wire / Block / Granule

Get affordable Zinc Sulfide (ZnS) materials for your laboratory needs. We produce and customize ZnS materials of varying purities, shapes, and sizes. Choose from a wide range of sputtering targets, coating materials, powders, and more.

Tin Sulfide (SnS2) Sputtering Target / Powder / Wire / Block / Granule

Tin Sulfide (SnS2) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Tin Sulfide (SnS2) materials for your laboratory at affordable prices. Our experts produce and customize materials to meet your specific needs. Check out our range of sputtering targets, coating materials, powders, and more.

4 inch PP chamber fully automatic laboratory homogenizer

4 inch PP chamber fully automatic laboratory homogenizer

Compact and efficient glue homogenizer for precise sample preparation in laboratories, featuring a 4-inch PP chamber, corrosion-resistant design, user-friendly LCD display, and customizable speed settings for optimal homogenization results.

4 inch stainless steel chamber fully automatic laboratory glue homogenizer

4 inch stainless steel chamber fully automatic laboratory glue homogenizer

The 4-inch stainless steel chamber fully automatic laboratory glue homogenizer is a compact and corrosion-resistant device designed for use in glove box operations. It features a transparent cover with constant torque positioning and an integrated mold opening inner cavity for easy disassembly, cleaning, and replacement.

Cold isostatic press for small workpiece production 400Mpa

Cold isostatic press for small workpiece production 400Mpa

Produce uniformly high-density materials with our Cold Isostatic Press. Ideal for compacting small workpieces in production settings. Widely used in powder metallurgy, ceramics, and biopharmaceutical fields for high-pressure sterilization and protein activation.

Warm Isostatic Press (WIP) Workstation 300Mpa

Warm Isostatic Press (WIP) Workstation 300Mpa

Discover Warm Isostatic Pressing (WIP) - A cutting-edge technology that enables uniform pressure to shape and press powdered products at a precise temperature. Ideal for complex parts and components in manufacturing.

4 inch aluminum alloy chamber fully automatic laboratory glue homogenizer

4 inch aluminum alloy chamber fully automatic laboratory glue homogenizer

The 4-inch aluminum alloy cavity fully automatic laboratory glue dispensing machine is a compact and corrosion-resistant device designed for laboratory use. It features a transparent cover with constant torque positioning, an integrated mold opening inner cavity for easy disassembly and cleaning, and an LCD text display color facial mask button for ease of use.

Vacuum dental porcelain sintering furnace

Vacuum dental porcelain sintering furnace

Get precise and reliable results with KinTek's Vacuum Porcelain Furnace. Suitable for all porcelain powders, it features hyperbolic ceramic furnace function, voice prompt, and automatic temperature calibration.

Electric Lab Cold Isostatic Press (CIP) 12T / 20T / 40T / 60T

Electric Lab Cold Isostatic Press (CIP) 12T / 20T / 40T / 60T

Produce dense, uniform parts with improved mechanical properties with our Electric Lab Cold Isostatic Press. Widely used in material research, pharmacy, and electronic industries. Efficient, compact, and vacuum-compatible.

Mesh belt controlled atmosphere furnace

Mesh belt controlled atmosphere furnace

Discover our KT-MB mesh belt sintering furnace - perfect for high-temperature sintering of electronic components & glass insulators. Available for open air or controlled atmosphere environments.


Leave Your Message