Knowledge What is the Process of SPS? 5 Key Stages Explained
Author avatar

Tech Team · Kintek Solution

Updated 3 months ago

What is the Process of SPS? 5 Key Stages Explained

Spark Plasma Sintering (SPS) is a sophisticated sintering technique. It combines uniaxial pressure with high-intensity, low-voltage, pulsed direct current. This method is particularly effective for processing a variety of materials. These include nanostructured materials, composites, and gradient materials.

5 Key Stages of the SPS Process

What is the Process of SPS? 5 Key Stages Explained

Vacuum Creation

The first stage involves removing gases to create a vacuum environment. This is crucial for ensuring that the subsequent stages occur under controlled conditions. It is free from atmospheric interference.

Pressure Application

In the second stage, uniaxial pressure is applied. This pressure aids in the compaction of the material particles. It facilitates their closer alignment and interaction.

Resistance Heating

The third stage involves resistance heating. A pulsed direct current is applied. This current heats the material through resistance. It creates a local high-temperature state that can reach several thousand degrees Celsius.

Cooling

The final stage is cooling. The material is allowed to cool down under controlled conditions. This helps achieve the desired final properties.

Mechanism of SPS

SPS uses pulsed direct current. This is a distinguishing feature from other sintering techniques. The current flows directly through the graphite die and the sample. It heats the material through resistance.

Spark Plasma Effect

The term "spark plasma" suggests the presence of plasma and electric discharges during the process. However, there is no unequivocal proof of these phenomena. This leads to ongoing debates about the terminology and mechanisms.

Advantages of SPS

SPS allows for rapid densification of materials. It achieves high-quality sintered bodies at lower temperatures and in shorter times compared to traditional sintering methods. The pulsed current and pressure inhibit particle growth. This allows for the creation of materials with unique compositions and properties. SPS is versatile. It can be used for a wide range of materials. These include conductive and non-conductive powders, nanostructured materials, and composites.

Historical Context

The concept of SPS originated in the mid-20th century. The first patent was by Inoue. The term SPS was introduced later by Japanese producers of commercial machines. Initially, the technique was popular in Japan and a few other Far-East countries. It has since spread to Western countries. This is particularly in research institutions and industrial environments.

Scientific Studies

Studies by SW Wang and LD Chen have explored SPS sintering on both conductive Cu powder and non-conductive Al2O3 powder. These studies highlight the effectiveness of SPS in achieving densification and unique material properties.

In summary, Spark Plasma Sintering (SPS) is a highly effective sintering technique. It leverages uniaxial pressure and pulsed direct current to achieve rapid densification and unique material properties. Despite ongoing debates about the exact mechanisms and terminology, SPS has proven to be a valuable tool in material processing. This is particularly for nanostructured materials and composites.

Continue exploring, consult our experts

Unlock the potential of your materials with KINTEK SOLUTION's advanced Spark Plasma Sintering technology. Experience rapid densification, enhanced material properties, and versatility like never before. Join the ranks of leading researchers and manufacturers who trust KINTEK for unparalleled sintering solutions. Don't miss out—contact us today to discover how SPS can revolutionize your material processing.

Related Products

Spark plasma sintering furnace SPS furnace

Spark plasma sintering furnace SPS furnace

Discover the benefits of Spark Plasma Sintering Furnaces for rapid, low-temperature material preparation. Uniform heating, low cost & eco-friendly.

Antimony Sulfide (Sb2S3) Sputtering Target / Powder / Wire / Block / Granule

Antimony Sulfide (Sb2S3) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Antimony Sulfide (Sb2S3) materials for your laboratory at reasonable prices. Our customizable products include sputtering targets, powders, foils, and more. Order now!

Zinc Sulfide (ZnS) Sputtering Target / Powder / Wire / Block / Granule

Zinc Sulfide (ZnS) Sputtering Target / Powder / Wire / Block / Granule

Get affordable Zinc Sulfide (ZnS) materials for your laboratory needs. We produce and customize ZnS materials of varying purities, shapes, and sizes. Choose from a wide range of sputtering targets, coating materials, powders, and more.

Molybdenum Sulfide (MoS2) Sputtering Target / Powder / Wire / Block / Granule

Molybdenum Sulfide (MoS2) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Molybdenum Sulfide materials at reasonable prices for your laboratory needs. Customized shapes, sizes, and purities available. Browse our selection of sputtering targets, powders, and more.

Vacuum pressure sintering furnace

Vacuum pressure sintering furnace

Vacuum pressure sintering furnaces are designed for high temperature hot pressing applications in metal and ceramic sintering. Its advanced features ensure precise temperature control, reliable pressure maintenance, and a robust design for seamless operation.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

9MPa air pressure sintering furnace

9MPa air pressure sintering furnace

The air pressure sintering furnace is a high-tech equipment commonly used for the sintering of advanced ceramic materials. It combines vacuum sintering and pressure sintering techniques to achieve high-density and high-strength ceramics.

Tin Sulfide (SnS2) Sputtering Target / Powder / Wire / Block / Granule

Tin Sulfide (SnS2) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Tin Sulfide (SnS2) materials for your laboratory at affordable prices. Our experts produce and customize materials to meet your specific needs. Check out our range of sputtering targets, coating materials, powders, and more.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

Warm iostatic press for solid state battery research

Warm iostatic press for solid state battery research

Discover the advanced Warm Isostatic Press (WIP) for semiconductor lamination. Ideal for MLCC, hybrid chips, and medical electronics. Enhance strength and stability with precision.

Vacuum tube hot press furnace

Vacuum tube hot press furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

Split automatic heated lab pellet press 30T / 40T

Split automatic heated lab pellet press 30T / 40T

Discover our split automatic heated lab press 30T/40T for precise sample preparation in material research, pharmacy, ceramics, and electronics industries. With a small footprint and heating up to 300°C, it's perfect for processing under vacuum environment.

Small vacuum tungsten wire sintering furnace

Small vacuum tungsten wire sintering furnace

The small vacuum tungsten wire sintering furnace is a compact experimental vacuum furnace specially designed for universities and scientific research institutes. The furnace features a CNC welded shell and vacuum piping to ensure leak-free operation. Quick-connect electrical connections facilitate relocation and debugging, and the standard electrical control cabinet is safe and convenient to operate.

High Purity Antimony (Sb) Sputtering Target / Powder / Wire / Block / Granule

High Purity Antimony (Sb) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Antimony (Sb) materials tailored to your specific needs. We offer a wide range of shapes and sizes at reasonable prices. Browse our sputtering targets, powders, foils, and more.

PTFE sampling spoon/solution spoon/sample spoon/dry powder spoon

PTFE sampling spoon/solution spoon/sample spoon/dry powder spoon

The PTFE sampling spoon, also known as a solution spoon or sample spoon, is a crucial tool for accurately introducing dry powder samples in various analytical processes. Made from PTFE, these spoons offer excellent chemical stability, corrosion resistance, and non-stick properties, making them ideal for handling delicate and reactive substances in laboratory settings.

High Purity Selenium (Se) Sputtering Target / Powder / Wire / Block / Granule

High Purity Selenium (Se) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Selenium (Se) materials for laboratory use? We specialize in producing and tailoring materials of various purities, shapes, and sizes to suit your unique requirements. Explore our range of sputtering targets, coating materials, powders, and more.

Vacuum brazing furnace

Vacuum brazing furnace

A vacuum brazing furnace is a type of industrial furnace used for brazing, a metalworking process that joins two pieces of metal using a filler metal that melts at a lower temperature than the base metals. Vacuum brazing furnaces are typically used for high-quality applications where a strong, clean joint is required.

PTFE acid and alkali resistant scoops/chemical powder material scoops

PTFE acid and alkali resistant scoops/chemical powder material scoops

Known for its excellent thermal stability, chemical resistance and electrical insulating properties, PTFE is a versatile thermoplastic material.

600T vacuum induction hot press furnace

600T vacuum induction hot press furnace

Discover the 600T Vacuum Induction Hot Press Furnace, designed for high-temperature sintering experiments in vacuum or protected atmospheres. Its precise temperature and pressure control, adjustable working pressure, and advanced safety features make it ideal for nonmetal materials, carbon composites, ceramics, and metal powders.

Molybdenum Vacuum furnace

Molybdenum Vacuum furnace

Discover the benefits of a high-configuration molybdenum vacuum furnace with heat shield insulation. Ideal for high-purity, vacuum environments like sapphire crystal growth and heat treatment.

PTFE sieve/PTFE mesh sieve/special for experiment

PTFE sieve/PTFE mesh sieve/special for experiment

PTFE sieve is a specialized test sieve designed for particle analysis in various industries, featuring a non-metallic mesh woven from PTFE (polytetrafluoroethylene) filament. This synthetic mesh is ideal for applications where metal contamination is a concern . PTFE sieves are crucial for maintaining the integrity of samples in sensitive environments, ensuring accurate and reliable results in particle size distribution analysis.

Electric Vacuum Heat Press

Electric Vacuum Heat Press

The Electric Vacuum Heat Press is a specialized heat press equipment that operates in a vacuum environment, utilizing advanced infrared heating and precise temperature control for high quality, rugged and reliable performance.

Vacuum Induction Melting Spinning System Arc Melting Furnace

Vacuum Induction Melting Spinning System Arc Melting Furnace

Develop metastable materials with ease using our Vacuum Melt Spinning System. Ideal for research and experimental work with amorphous and microcrystalline materials. Order now for effective results.

Manual  heat press High temperature hot pressing

Manual heat press High temperature hot pressing

The Manual Heat Press is a versatile piece of equipment suitable for a variety of applications, operated by a manual hydraulic system that applies controlled pressure and heat to the material placed on the piston.

PTFE stirring bar/high temperature resistant/olive type/cylindrical/laboratory rotor/magnetic stirrer

PTFE stirring bar/high temperature resistant/olive type/cylindrical/laboratory rotor/magnetic stirrer

The PTFE stirring bar, made from high-quality polytetrafluoroethylene (PTFE), offers exceptional resistance to acids, alkalis, and organic solvents, coupled with high-temperature stability and low friction. Ideal for laboratory use, these stirring bars are compatible with standard flask ports, ensuring stability and safety during operations.

PTFE mortar/acid and alkali resistant/corrosion resistant

PTFE mortar/acid and alkali resistant/corrosion resistant

Polytetrafluoroethylene (PTFE) is renowned for its exceptional chemical resistance, thermal stability, and low friction properties, making it a versatile material in various industries. The PTFE mortar, specifically, finds applications where these properties are crucial.

Laboratory high temperature PTFE mixing paddle mixer

Laboratory high temperature PTFE mixing paddle mixer

The PTFE mixing paddle mixer is a versatile and robust tool designed for laboratory use, particularly in environments requiring high resistance to chemicals and extreme temperatures. Crafted from high-quality PTFE, this mixer boasts several key features that enhance its functionality and durability.

PTFE tweezers

PTFE tweezers

PTFE tweezers inherit the excellent physical and chemical properties of PTFE, such as high temperature resistance, cold resistance, acid and alkali resistance, and corrosion resistance to most organic solvents.

PTFE Centrifuge Tube/laboratory pointed bottom/round bottom/flat bottom

PTFE Centrifuge Tube/laboratory pointed bottom/round bottom/flat bottom

PTFE centrifugal tubes are highly valued for their exceptional chemical resistance, thermal stability, and non-stick properties, making them indispensable in various high-demand sectors. These tubes are particularly useful in environments where exposure to corrosive substances, high temperatures, or stringent cleanliness requirements are prevalent.


Leave Your Message