Knowledge What Material is Used for Induction? 5 Key Points Explained
Author avatar

Tech Team · Kintek Solution

Updated 2 weeks ago

What Material is Used for Induction? 5 Key Points Explained

Induction heating is a process that uses electromagnetic induction to heat conductive materials, mainly metals.

This method is widely used in various industries for applications like melting, heating, and welding.

Unlike traditional heating methods, induction heating offers precise control and efficiency.

This makes it a preferred choice in many industrial processes.

What Material is Used for Induction? 5 Key Points Explained

What Material is Used for Induction? 5 Key Points Explained

1. Materials Suitable for Direct Induction Heating

Metals: Induction heating can only be directly applied to conductive materials, which are usually metals.

This includes cast iron, steel, some enamelled steel, and stainless steel with an iron base or core.

Non-Conductive Materials: Plastics and other non-conductive materials cannot be heated directly by induction.

They can be heated indirectly by first heating a conductive metal inductor and then transferring the heat to the non-conductive material.

2. Mechanism of Induction Heating

Electromagnetic Induction: The process begins with a coil of conductive material, typically copper.

As current flows through the coil, a magnetic field is produced in and around the coil.

The strength of this magnetic field depends on the coil design and the amount of current flowing through it.

Eddy Currents and Hysteresis Effect: When applied to magnetic materials, heat is generated both by eddy currents and the hysteresis effect of magnetic materials.

Eddy currents are induced currents that flow within the material.

The hysteresis effect is the energy loss due to the magnetization and demagnetization of the material.

3. Advantages of Induction Heating

Efficiency and Precision: Induction heating is highly efficient and allows for precise temperature control.

This makes it suitable for applications that require accurate heating, such as hardening steel parts and melting metals.

Environmental Benefits: Induction heating emits no hot and harmful emissions into the atmosphere.

This makes it an environmentally friendly option compared to traditional melting methods.

4. Applications of Induction Heating

Melting and Casting: Induction melting systems generate heat by eddy currents induced inside conductive crucibles, such as graphite or silicon carbide.

This method is used for casting metals and provides advantages over traditional melting methods.

Hardening Steel: Small induction furnaces are used to harden low carbon steel parts cryogenically.

This results in a ductile inner core and a hard outer shell.

This process is applicable in parts that require impact and abrasion resistance, such as gears, lock shackles, firing pins, and engine camshafts.

5. Considerations in Induction Heating

Material Properties: The heating rate and depth of penetration depend on the material's resistivity and the frequency of the alternating current.

Higher resistivity materials and higher frequencies result in quicker heating but lower depth of penetration.

Inductor Design: The inductor should allow easy insertion and removal of the material being heated.

The design of the inductor is crucial for efficient heat transfer and process control.

Power Supply Calculation: When calculating the power supply capacity, factors such as the specific heat of the material, the mass of the material, and the required temperature rise need to be considered.

In summary, induction heating is a versatile and efficient method primarily used for heating conductive materials like metals.

Its applications range from melting and casting to hardening steel and other industrial processes.

The choice of material is crucial, as only conductive materials can be heated directly by induction, while non-conductive materials require indirect heating methods.

Continue exploring, consult our experts

Discover the power of precise and efficient induction heating solutions for your industrial needs.

At KINTEK SOLUTION, we offer cutting-edge systems tailored for melting, heating, and welding.

With our expertise in material suitability and inductor design, we ensure superior performance and environmental benefits.

Elevate your production with KINTEK’s precision and efficiency.

Don’t miss out on transforming your industrial processes – [Contact KINTEK SOLUTION] today for a customized solution that meets your unique requirements.

Related Products

High Purity Indium (In) Sputtering Target / Powder / Wire / Block / Granule

High Purity Indium (In) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Indium materials for laboratory use? Look no further! Our expertise lies in producing tailored Indium materials of varying purities, shapes, and sizes. We offer a wide range of Indium products to suit your unique requirements. Order now at reasonable prices!

Vacuum induction melting furnace Arc Melting Furnace

Vacuum induction melting furnace Arc Melting Furnace

Get precise alloy composition with our Vacuum Induction Melting Furnace. Ideal for aerospace, nuclear energy, and electronic industries. Order now for effective smelting and casting of metals and alloys.

Vacuum levitation Induction melting furnace

Vacuum levitation Induction melting furnace

Experience precise melting with our Vacuum Levitation Melting Furnace. Ideal for high melting point metals or alloys, with advanced technology for effective smelting. Order now for high-quality results.

Vacuum Induction Melting Spinning System Arc Melting Furnace

Vacuum Induction Melting Spinning System Arc Melting Furnace

Develop metastable materials with ease using our Vacuum Melt Spinning System. Ideal for research and experimental work with amorphous and microcrystalline materials. Order now for effective results.

Indium Selenide (In2Se3) Sputtering Target / Powder / Wire / Block / Granule

Indium Selenide (In2Se3) Sputtering Target / Powder / Wire / Block / Granule

Find Indium Selenide (In2Se3) materials of different purities, shapes, and sizes for your lab needs. Our range includes sputtering targets, coatings, particles, and more at reasonable prices. Order now!

600T vacuum induction hot press furnace

600T vacuum induction hot press furnace

Discover the 600T Vacuum Induction Hot Press Furnace, designed for high-temperature sintering experiments in vacuum or protected atmospheres. Its precise temperature and pressure control, adjustable working pressure, and advanced safety features make it ideal for nonmetal materials, carbon composites, ceramics, and metal powders.

Vacuum arc furnace Induction melting furnace

Vacuum arc furnace Induction melting furnace

Discover the power of Vacuum Arc Furnace for melting active & refractory metals. High-speed, remarkable degassing effect, and free of contamination. Learn more now!

Indium(II) Selenide (InSe) Sputtering Target / Powder / Wire / Block / Granule

Indium(II) Selenide (InSe) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Indium(II) Selenide materials for your lab at reasonable prices? Our tailored and customizable InSe products come in various purities, shapes, and sizes to suit your unique needs. Choose from a range of sputtering targets, coating materials, powders, and more.

Cylindrical Lab electric heating Press Mold

Cylindrical Lab electric heating Press Mold

Efficiently prepare samples with Cylindrical Lab Electric Heating Press Mold. Fast heating, high temp & easy operation. Custom sizes available. Perfect for battery, ceramic & biochemical research.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

Copper Nickel Indium Alloy (CuNiIn) Sputtering Target / Powder / Wire / Block / Granule

Copper Nickel Indium Alloy (CuNiIn) Sputtering Target / Powder / Wire / Block / Granule

Looking for Copper Nickel Indium materials for your lab? Our affordable products come in different purities, shapes, and sizes to fit your needs. Browse our sputtering targets, powders, foils, and more!

Double plate heating mold

Double plate heating mold

Discover precision in heating with our Double Plate Heating Mold, featuring high-quality steel and uniform temperature control for efficient lab processes. Ideal for various thermal applications.

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace, a tailored solution for universities and research institutions, with high heating efficiency, user-friendliness, and precise temperature control.

Ultra-high temperature graphitization furnace

Ultra-high temperature graphitization furnace

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials.

Manual  heat press High temperature hot pressing

Manual heat press High temperature hot pressing

The Manual Heat Press is a versatile piece of equipment suitable for a variety of applications, operated by a manual hydraulic system that applies controlled pressure and heat to the material placed on the piston.

High Thermal Conductivity Film Graphitization Furnace

High Thermal Conductivity Film Graphitization Furnace

The high thermal conductivity film graphitization furnace has uniform temperature, low energy consumption and can operate continuously.

High Purity Indium Tin Oxide (ITO) Sputtering Target / Powder / Wire / Block / Granule

High Purity Indium Tin Oxide (ITO) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Indium Tin Oxide (ITO) Sputtering Targets for your lab needs at reasonable prices. Our customized options of different shapes and sizes cater to your unique requirements. Browse our range today.

Non consumable vacuum arc furnace Induction melting furnace

Non consumable vacuum arc furnace Induction melting furnace

Explore the benefits of Non-Consumable Vacuum Arc Furnace with high melting point electrodes. Small, easy to operate & eco-friendly. Ideal for laboratory research on refractory metals & carbides.

Small vacuum tungsten wire sintering furnace

Small vacuum tungsten wire sintering furnace

The small vacuum tungsten wire sintering furnace is a compact experimental vacuum furnace specially designed for universities and scientific research institutes. The furnace features a CNC welded shell and vacuum piping to ensure leak-free operation. Quick-connect electrical connections facilitate relocation and debugging, and the standard electrical control cabinet is safe and convenient to operate.

1700℃ Muffle furnace

1700℃ Muffle furnace

Get superior heat control with our 1700℃ Muffle Furnace. Equipped with intelligent temperature microprocessor, TFT touch screen controller & advanced insulation materials for precise heating up to 1700C. Order now!

Molybdenum Vacuum furnace

Molybdenum Vacuum furnace

Discover the benefits of a high-configuration molybdenum vacuum furnace with heat shield insulation. Ideal for high-purity, vacuum environments like sapphire crystal growth and heat treatment.

Electric Vacuum Heat Press

Electric Vacuum Heat Press

The Electric Vacuum Heat Press is a specialized heat press equipment that operates in a vacuum environment, utilizing advanced infrared heating and precise temperature control for high quality, rugged and reliable performance.

Hydrogen atmosphere furnace

Hydrogen atmosphere furnace

KT-AH Hydrogen atmosphere furnace - induction gas furnace for sintering/annealing with built-in safety features, dual housing design, and energy-saving efficiency. Ideal for lab and industrial use.


Leave Your Message