Products Thermal Equipment

Thermal Equipment

KinTek supplies a broad range of high-temperature furnaces, including lab, pilot production, and industrial production furnaces, with a temperature range of up to 3000 ℃. One of KinTek's advantages is the ability to create custom-made furnaces tailored to specific functions, such as different heating methods and speeds, extra high and dynamic vacuums, controlled atmospheres and gas circuits, automated mechanical structures, and software and hardware development.


Thermal Equipment


REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

The Engineering of Absence: Unlocking Material Purity Through Vacuum Furnaces

The Engineering of Absence: Unlocking Material Purity Through Vacuum Furnaces

Discover how vacuum furnaces prevent oxidation and ensure material integrity by heating in a near-airless environment. Explore the science of pure heat treatment.

Read more
Why Your Furnace Components Keep Failing—And the Material Science Fix

Why Your Furnace Components Keep Failing—And the Material Science Fix

Frustrated by costly furnace failures? Discover the root cause isn't bad luck, but a material science issue that the right ceramic tube can permanently solve.

Read more
The Architecture of Accuracy: Why the Electrolytic Cell Lid is Your Most Critical Interface

The Architecture of Accuracy: Why the Electrolytic Cell Lid is Your Most Critical Interface

There is no universal standard for electrolytic cell lids, though Φ6.2mm and Φ3.2mm are common. Learn why precise aperture configuration is vital for data integrity.

Read more
The Thermodynamics of Silence: How Inert Gas Breaks the Vacuum Barrier

The Thermodynamics of Silence: How Inert Gas Breaks the Vacuum Barrier

In high-temperature vacuum furnaces, cooling is an aggressive, engineered process. Learn how inert gas acts as a thermal conveyor belt to control metallurgy.

Read more
The Ceramic Paradox: Why the Best Way to Clean an Alumina Tube is Not to Clean It

The Ceramic Paradox: Why the Best Way to Clean an Alumina Tube is Not to Clean It

Deep cleaning is often a symptom of process failure. Discover the engineering protocols to maintain alumina tubes, prevent thermal shock, and ensure longevity.

Read more
Your Tungsten Furnace Is Failing. The Culprit Isn't What You Think.

Your Tungsten Furnace Is Failing. The Culprit Isn't What You Think.

Frustrated with contaminated samples from your tungsten furnace? Discover the hidden cause—and how mastering the atmosphere unlocks reliable results.

Read more
The Silent Vessel: Why the Material of Your Furnace Tube Defines Your Science

The Silent Vessel: Why the Material of Your Furnace Tube Defines Your Science

The tube furnace tube is not just a container; it is a boundary condition. Learn how choosing between ceramic, quartz, and metal defines your experimental limits.

Read more
Why Your Furnace Experiments Fail: The Hidden Mismatch in Your Lab

Why Your Furnace Experiments Fail: The Hidden Mismatch in Your Lab

Frustrated by inconsistent furnace results? Discover the hidden reason your thermal experiments fail and how the right tool can ensure repeatable success.

Read more
The Invisible Architecture of Precision: Mastery Before the Current Flows

The Invisible Architecture of Precision: Mastery Before the Current Flows

Achieve electrochemical accuracy by mastering the four pillars of preparation: rigorous inspection, cleaning, installation, and electrolyte management.

Read more
The Thermal Ceiling: Pushing 2200°C in Vacuum Environments

The Thermal Ceiling: Pushing 2200°C in Vacuum Environments

Discover how specialized vacuum furnaces achieve 2200°C+ through advanced graphite and tungsten elements. A deep dive into thermal engineering and material limits.

Read more
Why Your Induction Furnace Melts Are Failing: The Critical Mistake Most Labs Make

Why Your Induction Furnace Melts Are Failing: The Critical Mistake Most Labs Make

Frustrated with inconsistent metal quality from your induction furnace? Discover the root cause and learn how to choose the right equipment.

Read more
The Art of Nothing: Why Critical Engineering Demands Vacuum Brazing

The Art of Nothing: Why Critical Engineering Demands Vacuum Brazing

Discover how vacuum furnace brazing eliminates oxidation for superior joint integrity, the physics of vapor pressure, and why material selection dictates the process.

Read more
Why Your High-Temperature Furnace Fails: It’s Not About the Max Temp

Why Your High-Temperature Furnace Fails: It’s Not About the Max Temp

Struggling with inconsistent results from your vacuum furnace? Discover why chasing the highest temperature is a costly mistake and how to fix it.

Read more
The Quiet Physics of Purity: Mastering Heat in a Vacuum

The Quiet Physics of Purity: Mastering Heat in a Vacuum

Vacuum furnaces don't just heat; they fundamentally alter physics by replacing convection with radiation. Explore how removing air unlocks material perfection.

Read more
The Engineering of Nothingness: Why Absolute Purity Requires a Vacuum

The Engineering of Nothingness: Why Absolute Purity Requires a Vacuum

Discover why vacuum furnaces are indispensable for high-stakes thermal processing. We explore the balance between material integrity and oxidation control.

Read more
Why Your Furnace-Brazed Parts Fail—And Why It's Not the Furnace's Fault

Why Your Furnace-Brazed Parts Fail—And Why It's Not the Furnace's Fault

Discover the real reason your furnace brazing results are inconsistent and costly. It's not the equipment; it's a misunderstanding of physics.

Read more
The Silent Half of the Experiment: The Ritual of Cell Preservation

The Silent Half of the Experiment: The Ritual of Cell Preservation

Post-experiment care isn't just cleanup; it's calibration for the future. Learn the precise protocols for maintaining super-sealed electrolytic cells.

Read more
The Architecture of Emptiness: Why High-Stakes Engineering Demands a Vacuum

The Architecture of Emptiness: Why High-Stakes Engineering Demands a Vacuum

Vacuum furnaces are not just hotter ovens; they are tools of subtraction. Discover how removing the atmosphere unlocks material perfection in aerospace and medicine.

Read more
Your Furnace Hit the Right Temperature. So Why Are Your Parts Failing?

Your Furnace Hit the Right Temperature. So Why Are Your Parts Failing?

Your vacuum furnace reaches temperature but ruins your parts? Learn the hidden cause of failure and how choosing the right hot zone material ensures perfect results.

Read more
The Art of Nothingness: Precision and Purity in Vacuum Heat Treatment

The Art of Nothingness: Precision and Purity in Vacuum Heat Treatment

Discover the engineering logic behind vacuum furnaces. Learn how eliminating air prevents oxidation, ensures purity, and enables advanced metallurgy.

Read more