Knowledge What Causes a Heating Element to Burn Out? 7 Key Factors You Need to Know
Author avatar

Tech Team · Kintek Solution

Updated 3 months ago

What Causes a Heating Element to Burn Out? 7 Key Factors You Need to Know

Heating elements can burn out due to several factors. Understanding these causes is crucial for ensuring the longevity and efficiency of heating elements in various applications.

7 Key Factors That Lead to Heating Element Burnout

What Causes a Heating Element to Burn Out? 7 Key Factors You Need to Know

1. Evaporation Due to Low Vapor Pressure

Mechanism: When a heating element is exposed to a vacuum or low-pressure environment, the material can evaporate if the operating pressure is below its vapor pressure. This evaporation reduces the cross-sectional area of the element, leading to burnout.

Prevention: To prevent this, heating elements should be made from materials with a lower vapor pressure than the operating pressure of the furnace. Using partial pressure atmospheres above the critical evaporation temperature of the element material can also help.

2. Embrittlement and Grain Growth

Effect: Heating alloys containing iron can form large, brittle grains at high temperatures, making the elements brittle and prone to rupture.

Impact: This brittleness can lead to easy rupture during handling or operation, causing the element to fail.

3. Contamination and Corrosion

Sources: Contamination can come from gases in controlled atmospheres, fumes from fluxes used in brazing, or oil fumes from heat treatment of contaminated components.

Consequences: These contaminants can lead to dry corrosion of the elements, reducing their lifespan. Corrosion can also cause small cracks, which over time can lead to burnout.

4. Formation of Hot Spots

Causes: Hot spots occur when certain points in the heating element reach a higher temperature than the rest. This can be due to local oxidation, shielding by supports, or insufficient support leading to sagging and warping.

Effects: Hot spots increase local resistance and heat production, leading to breakdown of the element.

5. Oxidation and Intermittency of Operation

Process: High temperatures cause the formation of a continuous oxide scale on the element's surface, which protects the inner metal. However, frequent heating and cooling cycles can cause this scale to crack and flake off.

Impact: This exposes fresh metal to oxidation, leading to increased local oxidation and the formation of hot spots.

6. Faulty Wiring

Issue: Problems in the wiring of the furnace can lead to inadequate electrical power reaching the heating element.

Consequence: This can cause the element to burn out due to insufficient power or incorrect current flow.

7. Protection and Control Systems

Measures: To prevent burnout, systems such as automatic temperature controls, overload relays, and fuses are used. These systems help manage the temperature and current flow, ensuring the element operates within safe parameters.

Importance: Properly functioning control systems are essential for the longevity of heating elements, as they prevent overloading and excessive temperatures.

By understanding and addressing these key points, one can significantly enhance the durability and performance of heating elements, ensuring they operate efficiently and safely in various industrial and laboratory settings.

Continue Exploring, Consult Our Experts

Heating elements are the backbone of countless industrial and laboratory processes. From evaporation due to low vapor pressure to faulty wiring, understanding the challenges they face is crucial. At KINTEK SOLUTION, we offer robust solutions that tackle these issues head-on. Upgrade your equipment today to ensure longevity and efficiency. Don’t miss out on our specialized products designed to prevent burnout and enhance performance. Contact KINTEK SOLUTION now to learn how our expert solutions can transform your operations. Take the first step to reliability—reach out today!

Related Products

silicon carbide(SiC) heating element

silicon carbide(SiC) heating element

Experience the advantages of Silicon Carbide (SiC) Heating Element: Long service life, high corrosion and oxidation resistance, fast heating speed, and easy maintenance. Learn more now!

molybdenum disilicide (MoSi2) heating element

molybdenum disilicide (MoSi2) heating element

Discover the power of Molybdenum Disilicide (MoSi2) Heating Element for high-temperature resistance. Unique oxidation resistance with stable resistance value. Learn more about its benefits now!

Ultra-high temperature graphitization furnace

Ultra-high temperature graphitization furnace

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials.

High Thermal Conductivity Film Graphitization Furnace

High Thermal Conductivity Film Graphitization Furnace

The high thermal conductivity film graphitization furnace has uniform temperature, low energy consumption and can operate continuously.

Hydrogen atmosphere furnace

Hydrogen atmosphere furnace

KT-AH Hydrogen atmosphere furnace - induction gas furnace for sintering/annealing with built-in safety features, dual housing design, and energy-saving efficiency. Ideal for lab and industrial use.

Molybdenum Vacuum furnace

Molybdenum Vacuum furnace

Discover the benefits of a high-configuration molybdenum vacuum furnace with heat shield insulation. Ideal for high-purity, vacuum environments like sapphire crystal growth and heat treatment.

Graphite evaporation crucible

Graphite evaporation crucible

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

1400℃ Tube furnace with Alumina tube

1400℃ Tube furnace with Alumina tube

Looking for a tube furnace for high-temperature applications? Our 1400℃ Tube Furnace with Alumina Tube is perfect for research and industrial use.

Molybdenum / Tungsten / Tantalum Evaporation Boat

Molybdenum / Tungsten / Tantalum Evaporation Boat

Evaporation boat sources are used in thermal evaporation systems and are suitable for depositing various metals, alloys and materials. Evaporation boat sources are available in different thicknesses of tungsten, tantalum and molybdenum to ensure compatibility with a variety of power sources. As a container, it is used for vacuum evaporation of materials. They can be used for thin film deposition of various materials, or designed to be compatible with techniques such as electron beam fabrication.

Vacuum molybdenum wire sintering furnace

Vacuum molybdenum wire sintering furnace

A vacuum molybdenum wire sintering furnace is a vertical or bedroom structure, which is suitable for withdrawal, brazing, sintering and degassing of metal materials under high vacuum and high temperature conditions. It is also suitable for dehydroxylation treatment of quartz materials.

PTFE sieve/PTFE mesh sieve/special for experiment

PTFE sieve/PTFE mesh sieve/special for experiment

PTFE sieve is a specialized test sieve designed for particle analysis in various industries, featuring a non-metallic mesh woven from PTFE (polytetrafluoroethylene) filament. This synthetic mesh is ideal for applications where metal contamination is a concern . PTFE sieves are crucial for maintaining the integrity of samples in sensitive environments, ensuring accurate and reliable results in particle size distribution analysis.

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.

1800℃ Muffle furnace

1800℃ Muffle furnace

KT-18 muffle furnace with Japan Al2O3 polycrystalline fibe and Silicon Molybdenum heating element, up to 1900℃, PID temperature control and 7" smart touch screen. Compact design, low heat loss, and high energy efficiency. Safety interlock system and versatile functions.

Vacuum brazing furnace

Vacuum brazing furnace

A vacuum brazing furnace is a type of industrial furnace used for brazing, a metalworking process that joins two pieces of metal using a filler metal that melts at a lower temperature than the base metals. Vacuum brazing furnaces are typically used for high-quality applications where a strong, clean joint is required.

Heating Circulator High temperature constant temperature reaction bath

Heating Circulator High temperature constant temperature reaction bath

Efficient and reliable, KinTek KHB Heating Circulator is perfect for your lab needs. With a max. heating temperature of up to 300℃, it features accurate temperature control and fast heating.

1700℃ Muffle furnace

1700℃ Muffle furnace

Get superior heat control with our 1700℃ Muffle Furnace. Equipped with intelligent temperature microprocessor, TFT touch screen controller & advanced insulation materials for precise heating up to 1700C. Order now!

80L Heating Chilling Circulator High temperature and low temperature constant temperature reaction bath

80L Heating Chilling Circulator High temperature and low temperature constant temperature reaction bath

Get all-in-one heating, chilling, and circulating capabilities with our KinTek KCBH 80L Heating Chilling Circulator. High efficiency, reliable performance for labs and industrial applications.

Electron Beam Evaporation Graphite Crucible

Electron Beam Evaporation Graphite Crucible

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.

Alumina (Al2O3) Furnace Tube - High Temperature

Alumina (Al2O3) Furnace Tube - High Temperature

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

Electron Gun Beam Crucible

Electron Gun Beam Crucible

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

10L Heating Chilling Circulator High temperature and low temperature constant temperature reaction bath

10L Heating Chilling Circulator High temperature and low temperature constant temperature reaction bath

Experience efficient lab performance with KinTek KCBH 10L Heating Chilling Circulator. Its all-in-one design offers reliable heating, chilling, and circulating functions for industrial and lab use.

1400℃ Muffle furnace

1400℃ Muffle furnace

Get precise high-temperature control up to 1500℃ with KT-14M Muffle furnace. Equipped with a smart touch screen controller and advanced insulation materials.

20L Heating Chilling Circulator High temperature and low temperature constant temperature reaction bath

20L Heating Chilling Circulator High temperature and low temperature constant temperature reaction bath

Maximize lab productivity with KinTek KCBH 20L Heating Chilling Circulator. Its all-in-one design offers reliable heating, chilling, and circulating functions for industrial and lab use.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

10-50L Single Glass Reactor

10-50L Single Glass Reactor

Looking for a reliable single glass reactor system for your lab? Our 10-50L reactor offers precise temperature and stirring control, durable support, and safety features for synthetic reactions, distillation, and more. KinTek's customizable options and tailored services are here to meet your needs.

50L Heating Chilling Circulator High temperature and low temperature constant temperature reaction bath

50L Heating Chilling Circulator High temperature and low temperature constant temperature reaction bath

Experience versatile heating, chilling, and circulating capabilities with our KinTek KCBH 50L Heating Chilling Circulator. Ideal for labs and industrial settings, with efficient and reliable performance.

1200℃ Muffle furnace

1200℃ Muffle furnace

Upgrade your lab with our 1200℃ Muffle Furnace. Achieve fast, precise heating with Japan alumina fibers and Molybdenum coils. Features TFT touch screen controller for easy programming and data analysis. Order now!

30L Heating Chilling Circulator High temperature and low temperature constant temperature reaction bath

30L Heating Chilling Circulator High temperature and low temperature constant temperature reaction bath

Get versatile lab performance with KinTek KCBH 30L Heating Chilling Circulator. With max. heating temp of 200℃ and max. chilling temp of -80℃, it's perfect for industrial needs.

10-50L Jacket Glass Reactor

10-50L Jacket Glass Reactor

Discover the Versatile 10-50L Jacket Glass Reactor for Pharmaceutical, Chemical, and Biological Industries. Accurate Stirring Speed Control, Multiple Safety Protections, and Customizable Options Available. KinTek, Your Glass Reactor Partner.

80-150L Single Glass Reactor

80-150L Single Glass Reactor

Looking for a glass reactor system for your lab? Our 80-150L single glass reactor offers controlled temperature, speed, and mechanical functions for synthetic reactions, distillation, and more. With customizable options and tailored services, KinTek has you covered.


Leave Your Message