Products

Sample Preparation

KinTek sample preparation equipment includes sample crushing,milling, as while as while sieving equipment, hydraulic press equipment includes manual press, electric press, isostatic press, hot press and press filtering machine.

Thermal Equipment

KinTek supplies a broad range of high-temperature furnaces, including lab, pilot production, and industrial production furnaces, with a temperature range of up to 3000 ℃. One of KinTek's advantages is the ability to create custom-made furnaces tailored to specific functions, such as different heating methods and speeds, extra high and dynamic vacuums, controlled atmospheres and gas circuits, automated mechanical structures, and software and hardware development.

Lab Consumables & Materials

KinTek offers a range of lab consumables and materials, including evaporation materials, targets, metals, electrochemistry parts, as well as powders, pellets, wires, strips, foils, plates, and more.

Bio-Chem Equipment

KinTek bio-chem equipment comprises rotary evaporators, glass and stainless steel reactors, distillation systems, circulating heaters and chillers, as well as vacuum equipment.


Products

Copper Foam

Copper Foam

Item Number : BC-25


REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

The Invisible Architecture of Precision: Mastery Before the Current Flows

The Invisible Architecture of Precision: Mastery Before the Current Flows

Achieve electrochemical accuracy by mastering the four pillars of preparation: rigorous inspection, cleaning, installation, and electrolyte management.

Read more
The Geometry of Cleanliness: Why Surface Integrity Defines Electrochemical Success

The Geometry of Cleanliness: Why Surface Integrity Defines Electrochemical Success

Master the art of electrolytic cell maintenance. Discover how a tiered cleaning protocol prevents contamination and ensures experimental reproducibility.

Read more
The Thermodynamics of Patience: Preventing Electrolytic Cell Overload

The Thermodynamics of Patience: Preventing Electrolytic Cell Overload

Overloading an electrolytic cell isn't just an error; it's a systemic failure. Learn the physics of safety, the risks of excess energy, and how to maintain control.

Read more
The Real Reason Your Sintered Parts Crack (And It’s Not the Furnace)

The Real Reason Your Sintered Parts Crack (And It’s Not the Furnace)

Stop blaming the furnace. Discover the hidden flaw in powder pressing that causes parts to crack and learn how Cold Isostatic Pressing (CIP) offers a permanent fix.

Read more
The Silent Interface: Mastery Over Electrode Decay

The Silent Interface: Mastery Over Electrode Decay

Electrode failure is rarely sudden; it is the compound interest of neglect. Learn the disciplined maintenance protocols that preserve accuracy and longevity.

Read more
The Silence of the Seal: Why Electrochemical Precision is a Battle Against the Atmosphere

The Silence of the Seal: Why Electrochemical Precision is a Battle Against the Atmosphere

Precision in electrochemistry isn't just about voltage; it's about isolation. Discover how super-sealed cells defeat contamination and define reproducibility.

Read more
The Silent Partner: Why Material Choice in Electrochemistry is a Matter of Trust

The Silent Partner: Why Material Choice in Electrochemistry is a Matter of Trust

Discover why high borosilicate glass and PTFE are the non-negotiable standards for electrolytic cells. A deep dive into material science for precise data.

Read more
The Architecture of Control: Why Thermal Stability Defines Electrolysis Success

The Architecture of Control: Why Thermal Stability Defines Electrolysis Success

Discover how double-layer water-bath electrolytic cells eliminate thermal variables, ensuring accuracy and reproducibility in electrochemical research.

Read more
Why Your High-Temperature Furnace Elements Keep Failing (And How to Stop It)

Why Your High-Temperature Furnace Elements Keep Failing (And How to Stop It)

Discover the hidden causes of MoSi2 heating element failure, like pesting and chemical attack, and learn how to achieve reliable, repeatable results.

Read more
Why Your High-Temperature Furnace Elements Fail: The Critical Difference in Silicon Carbide

Why Your High-Temperature Furnace Elements Fail: The Critical Difference in Silicon Carbide

Furnace downtime from failing SiC heating elements costs time and money. Discover the critical material difference that ensures reliability in extreme applications.

Read more
How to Select the Right Oil-Free Diaphragm Pump for Your Lab or Industrial Needs

How to Select the Right Oil-Free Diaphragm Pump for Your Lab or Industrial Needs

Learn how to choose the right oil-free diaphragm pump for your lab or industry—balancing specs, chemical resistance, and lifetime costs.

Read more
Preserving the Irreplaceable: How ULT Freezers Protect Critical Samples Across Industries

Preserving the Irreplaceable: How ULT Freezers Protect Critical Samples Across Industries

ULT freezers at -80°C protect biological samples, vaccines, and research materials from degradation, ensuring long-term viability across industries.

Read more
Polytetrafluoroethylene (PTFE): How low friction coefficient promotes industrial progress

Polytetrafluoroethylene (PTFE): How low friction coefficient promotes industrial progress

Explore the unique advantages of polytetrafluoroethylene (PTFE)'s low coefficient of friction and analyze how it promotes progress and innovation in industrial technology in terms of reducing wear and improving equipment efficiency.

Read more
Performance and application of polytetrafluoroethylene (PTFE) in high temperature environment

Performance and application of polytetrafluoroethylene (PTFE) in high temperature environment

Read more
PTFE seals: the invisible guardian of industrial leakage prevention

PTFE seals: the invisible guardian of industrial leakage prevention

PTFE Seals are used to prevent liquid or gas leakage and are widely used in valves, pumps, and piping systems.

Read more
PTFE's high temperature and corrosion resistance: Why it is indispensable in industry

PTFE's high temperature and corrosion resistance: Why it is indispensable in industry

The unique advantages of polytetrafluoroethylene (PTFE) in high temperature and corrosion resistance analyze why it has become an indispensable material in industry, especially in applications in harsh environments.

Read more
Innovative Application of PTFE in Mechanical Seals

Innovative Application of PTFE in Mechanical Seals

PTFE has become one of the core materials in the field of mechanical seals due to its unique chemical stability, low friction coefficient (0.04-0.15), wide temperature range (-268°C to +315°C) and excellent corrosion resistance (pH 0-14).

Read more
The key role of PTFE in semiconductor manufacturing: from gas pipelines to electrical insulation

The key role of PTFE in semiconductor manufacturing: from gas pipelines to electrical insulation

From high-purity gas delivery pipelines to precision electrical insulation components, the multi-faceted application of PTFE in the semiconductor industry chain provides important guarantees for the purity, stability and reliability of the manufacturing process.

Read more
How to use PTFE to improve the working efficiency of pumps and valves

How to use PTFE to improve the working efficiency of pumps and valves

Polytetrafluoroethylene (PTFE) has become a key material for improving the efficiency of pumps and valves due to its unique physical and chemical properties.

Read more
PTFE gasket: an all-around solution for flange sealing

PTFE gasket: an all-around solution for flange sealing

Polytetrafluoroethylene (PTFE) gaskets have become an ideal choice in the field of flange sealing due to their unique chemical stability and high temperature resistance.

Read more