Knowledge What are Sintered Parts? 4 Key Points Explained
Author avatar

Tech Team · Kintek Solution

Updated 2 months ago

What are Sintered Parts? 4 Key Points Explained

Sintered parts are integral components formed through a process called sintering. This involves compressing and heating metal or ceramic powders to bond the particles together without fully melting them. This method is widely used in various industries due to its ability to produce complex shapes with high precision and mechanical properties at a low cost.

Definition and Process of Sintering

What are Sintered Parts? 4 Key Points Explained

Sintering is a manufacturing process where powdered materials, often metals or ceramics, are compressed into a desired shape and then heated. The heat causes the particles to bond, forming a solid part. This process does not require the materials to reach their melting point, which is beneficial for metals with high melting points.

Stages of Sintering

The sintering process involves two main stages:

  1. Forming the Shape: The powdered material is compressed into the desired shape, creating a weak and oversized component.
  2. Heating and Bonding: The shaped component is then heated to expel binders and cause the metal particles to fuse together, resulting in a full-strength part.

Materials and Applications

Sintered parts can be made from a variety of materials, including iron, aluminum, stainless steel, and ceramics. These parts are used in a wide range of applications such as gears, bearings, bushings, automotive parts, structural components, and more. The versatility of materials and the ability to create complex shapes make sintering a preferred method in industries requiring high precision and strength.

Benefits of Sintered Parts

Sintered metal parts offer several advantages:

  • High Strength and Wear Resistance: Sintered parts often exhibit higher strength and wear resistance compared to traditionally cast parts.
  • Dimensional Accuracy: The process allows for high dimensional accuracy, reducing the need for additional machining.
  • Cost-Effective: The low per-part cost and high repeatability make sintering an economically efficient method.
  • Material Versatility: The ability to use a wide range of materials enhances the applicability of sintered parts in various industries.

Historical and Modern Uses

The term "sinter" originated from German in the late 18th century and has since been used in various industries. Modern uses include the creation of structural steel parts, porous metals for filtering, tungsten wiring, self-lubricating bearings, magnetic materials, electrical contacts, dental products, medical products, cutting tools, and more.

In summary, sintered parts are integral components produced through a precise and cost-effective process that involves compressing and heating powdered materials to bond the particles together. This method offers numerous benefits, including high strength, wear resistance, dimensional accuracy, and material versatility, making it a preferred choice in various industrial applications.

Continue exploring, consult our experts

Unleash the Precision and Strength of Sintered Parts Today! KINTEK SOLUTION's advanced sintering technology delivers high-strength, wear-resistant components with unparalleled dimensional accuracy. Our versatile range caters to complex industrial needs, from automotive to medical applications. Don't settle for less. Explore our sintered parts solutions and elevate your projects to new heights – Contact KINTEK SOLUTION for tailored product excellence and cost-efficient manufacturing!

Related Products

Vacuum pressure sintering furnace

Vacuum pressure sintering furnace

Vacuum pressure sintering furnaces are designed for high temperature hot pressing applications in metal and ceramic sintering. Its advanced features ensure precise temperature control, reliable pressure maintenance, and a robust design for seamless operation.

Silicon Carbide (SIC) Ceramic Plate

Silicon Carbide (SIC) Ceramic Plate

Silicon nitride (sic) ceramic is an inorganic material ceramic that does not shrink during sintering. It is a high-strength, low-density, high-temperature-resistant covalent bond compound.

9MPa air pressure sintering furnace

9MPa air pressure sintering furnace

The air pressure sintering furnace is a high-tech equipment commonly used for the sintering of advanced ceramic materials. It combines vacuum sintering and pressure sintering techniques to achieve high-density and high-strength ceramics.

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon nitride plate is a commonly used ceramic material in the metallurgical industry due to its uniform performance at high temperatures.

Boron Nitride (BN) Ceramic Parts

Boron Nitride (BN) Ceramic Parts

Boron nitride ((BN) is a compound with high melting point, high hardness, high thermal conductivity and high electrical resistivity. Its crystal structure is similar to graphene and harder than diamond.

Silicon Carbide (SIC) Ceramic Sheet Wear-Rresistant

Silicon Carbide (SIC) Ceramic Sheet Wear-Rresistant

Silicon carbide (sic) ceramic sheet is composed of high-purity silicon carbide and ultra-fine powder, which is formed by vibration molding and high-temperature sintering.

Silicon Carbide (SiC) Sputtering Target / Powder / Wire / Block / Granule

Silicon Carbide (SiC) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Silicon Carbide (SiC) materials for your lab? Look no further! Our expert team produces and tailors SiC materials to your exact needs at reasonable prices. Browse our range of sputtering targets, coatings, powders, and more today.

Isostatic pressing molds

Isostatic pressing molds

Explore high-performance isostatic pressing molds for advanced material processing. Ideal for achieving uniform density and strength in manufacturing.

Round bidirectional press mold

Round bidirectional press mold

The round bidirectional press mold is a specialized tool used in high-pressure molding processes, particularly for creating intricate shapes from metal powders.

Boron Nitride (BN) Ceramics-Conductive Composite

Boron Nitride (BN) Ceramics-Conductive Composite

Due to the characteristics of boron nitride itself, the dielectric constant and dielectric loss are very small, so it is an ideal electrical insulating material.

Vacuum tube hot press furnace

Vacuum tube hot press furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

Boron Nitride (BN) Ceramic Custom Parts

Boron Nitride (BN) Ceramic Custom Parts

Boron nitride (BN) ceramics can have different shapes, so they can be manufactured to generate high temperature, high pressure, insulation and heat dissipation to avoid neutron radiation.

Special shape press mold

Special shape press mold

Discover high-pressure special shape press molds for diverse applications, from ceramics to automotive parts. Ideal for precise, efficient molding of various shapes and sizes.

Cylindrical press mold with scale

Cylindrical press mold with scale

Discover precision with our Cylindrical Press Mold. Ideal for high-pressure applications, it molds various shapes and sizes, ensuring stability and uniformity. Perfect for lab use.

Silicon Nitride (Si3N4) Sputtering Target / Powder / Wire / Block / Granule

Silicon Nitride (Si3N4) Sputtering Target / Powder / Wire / Block / Granule

Get affordable Silicon Nitride (Si3N4) materials for your lab needs. We produce and customize various shapes, sizes, and purities to fit your requirements. Browse our range of sputtering targets, powders, and more.

Square bidirectional pressure mold

Square bidirectional pressure mold

Discover precision in molding with our Square Bidirectional Pressure Mold. Ideal for creating diverse shapes and sizes, from squares to hexagons, under high pressure and uniform heating. Perfect for advanced material processing.

Small vacuum tungsten wire sintering furnace

Small vacuum tungsten wire sintering furnace

The small vacuum tungsten wire sintering furnace is a compact experimental vacuum furnace specially designed for universities and scientific research institutes. The furnace features a CNC welded shell and vacuum piping to ensure leak-free operation. Quick-connect electrical connections facilitate relocation and debugging, and the standard electrical control cabinet is safe and convenient to operate.

Assemble Lab Cylindrical Press Mold

Assemble Lab Cylindrical Press Mold

Get reliable and precise molding with Assemble Lab Cylindrical Press Mold. Perfect for ultra-fine powder or delicate samples, widely used in material research and development.

Ball press mold

Ball press mold

Explore versatile Hydraulic Hot Press molds for precise compression molding. Ideal for creating various shapes and sizes with uniform stability.

Polygon press mold

Polygon press mold

Discover precision polygon press molds for sintering. Ideal for pentagon-shaped parts, our molds ensure uniform pressure and stability. Perfect for repeatable, high-quality production.

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

Carbide Lab Press Mold

Carbide Lab Press Mold

Form ultra-hard samples with Carbide Lab Press Mold. Made of Japanese high-speed steel, it has a long service life. Custom sizes available.

Zirconia Ceramic Ball - Precision Machining

Zirconia Ceramic Ball - Precision Machining

zirconia ceramic ball have the characteristics of high strength, high hardness, PPM wear level, high fracture toughness, good wear resistance, and high specific gravity.

Cylindrical Lab electric heating Press Mold

Cylindrical Lab electric heating Press Mold

Efficiently prepare samples with Cylindrical Lab Electric Heating Press Mold. Fast heating, high temp & easy operation. Custom sizes available. Perfect for battery, ceramic & biochemical research.

Zirconia Ceramic Rod - Stabilized Yttrium Precision Machining

Zirconia Ceramic Rod - Stabilized Yttrium Precision Machining

Zirconia ceramic rods are prepared by isostatic pressing, and a uniform, dense and smooth ceramic layer and transition layer are formed at high temperature and high speed.

Zirconia Ceramic Plate - Yttria Stabilized Precision Machined

Zirconia Ceramic Plate - Yttria Stabilized Precision Machined

Yttrium-stabilized zirconia has the characteristics of high hardness and high temperature resistance, and has become an important material in the field of refractories and special ceramics.


Leave Your Message