Thematics Electrolytic Cell

electrolytic cell

An electrolytic cell is an electrochemical device that uses electrical energy to facilitate a non-spontaneous redox reaction. It is commonly used for the electrolysis of certain compounds, such as water, to form gaseous oxygen and gaseous hydrogen. The three primary components of electrolytic cells are the cathode (negatively charged), the anode (positively charged), and the electrolyte. Electrolytic cells are also used for the extraction of aluminum from bauxite, in electroplating, and in electrowinning processes. Additionally, the industrial production of high-purity copper, high-purity zinc, and high-purity aluminum is almost always done through electrolytic cells.


We have the best Electrolytic Cell solutions to meet your needs. Our extensive portfolio of electrolytic cells includes standard solutions for common applications, as well as bespoke designs for unique requirements.

Applications of Electrolytic Cell

  • Decomposition of chemical compounds, such as water into hydrogen and oxygen, and bauxite into aluminum and other chemicals.
  • Electroplating of copper, silver, nickel, or chromium.
  • Electrorefining and electrowinning of non-ferrous metals like high-purity aluminum, copper, zinc, and lead.
  • Production of caustic soda and other chemicals.
  • Refining copper and other metals.
  • Determination of electrode potential of different metals.
  • Determination of electrochemical series via a Standard Hydrogen Electrode (SHE) system.

Advantages of Electrolytic Cell

  • Electrolytic cells are used for the production of hydrogen and oxygen gas from water.
  • They are used to extract aluminum from bauxite.
  • Electrolytic cells are used in electroplating to create a thin protective layer of a specific metal on the surface of another metal.
  • The electrorefining of many non-ferrous metals is done with the help of electrolytic cells.
  • Electrolytic cells are used in electrowinning processes.
  • Industrial production of high-purity copper, high-purity zinc, and high-purity aluminium is almost always done through electrolytic cells.

Electrolytic cell is an electrochemical cell that drives a non-spontaneous redox reaction with electrical energy. It is widely used to decompose chemical compounds and electroplate various metals. Our extensive product line provides you with a standard solution that fits your needs, and for more unique applications, our custom design service will help us cater to your specific requirements.

FAQ

What Are Electrolytic Cells Used For?

Electrolytic cells are used for the decomposition of chemical compounds through electrolysis. This process involves the use of an external electric current to facilitate a non-spontaneous redox reaction. Electrolytic cells are commonly used to produce oxygen and hydrogen gas from water, extract aluminum from bauxite, and electroplate various metals. Additionally, electrolytic cells are used in the electrorefining and electrowinning of non-ferrous metals such as aluminum, copper, zinc, and lead. Overall, electrolytic cells have numerous industrial applications in the production and refinement of various chemical compounds and metals.

What Is The Difference Between Galvanic Cell And Electrolytic Cell?

The main difference between a galvanic cell and an electrolytic cell is that a galvanic cell generates electrical energy from a spontaneous redox reaction, while an electrolytic cell uses electrical energy to drive a non-spontaneous redox reaction. Another difference is that a galvanic cell has a positive cell potential, while an electrolytic cell has a negative cell potential. Galvanic cells are used in batteries, while electrolytic cells are used in processes such as electroplating and purification of metals.

What Is An Electrolytic Cell And How Does It Work?

An electrolytic cell is an electrochemical cell that uses electrical energy to drive a non-spontaneous redox reaction. It consists of an electrolyte and two electrodes (a cathode and an anode). When an external voltage is supplied to the electrodes, the ions in the electrolyte are attracted to an electrode with the opposite charge, allowing charge-transferring (also known as faradaic or redox) events to occur. The negative electrode is called the cathode and the positive electrode is called the anode. Oxidation occurs at the anode, and reduction occurs at the cathode.

What Are The Two Points Of Difference Between Electrochemical And Electrolytic Cells?

Electrochemical and electrolytic cells both rely on the movement of electrons through the system. However, spontaneous chemical reactions occur in electrochemical cells, whereas nonspontaneous chemical reactions occur in electrolytic cells.

What Is The Example Of Electrolytic Cell?

Important examples of electrolysis are the decomposition of water into hydrogen and oxygen, and bauxite into aluminum and other chemicals. Electroplating (e.g., of copper, silver, nickel, or chromium) is done using an electrolytic cell.

Are Electrolytic Cells Spontaneous?

Galvanic cells derives its energy from spontaneous redox reactions, while electrolytic cells involve non-spontaneous reactions and thus require an external electron source like a DC battery or an AC power source.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

The Transparency Paradox: Mastering the Fragile Art of Electrolytic Cells

The Transparency Paradox: Mastering the Fragile Art of Electrolytic Cells

Glass electrolytic cells are precision instruments, not simple containers. Learn the systematic approach to handling glass to ensure safety and data integrity.

Read more
The Art of the Shutdown: Engineering Reliability in Electrochemical Cells

The Art of the Shutdown: Engineering Reliability in Electrochemical Cells

Post-experiment procedures are not chores; they are the foundation of future accuracy. Learn the disciplined protocol for maintaining double-layer electrolytic cells.

Read more
The Invisible Variable: Why Electrolytic Cell Hygiene Defines Data Integrity

The Invisible Variable: Why Electrolytic Cell Hygiene Defines Data Integrity

Master the art of electrolytic cell maintenance. Discover how a strict cleaning protocol prevents cross-contamination and secures reproducible electrochemical results.

Read more
The Silent Deformation: Why Good Intentions Break Precision Glassware

The Silent Deformation: Why Good Intentions Break Precision Glassware

Discover the critical thermal limits of double-layer electrolytic cells. Learn why heating the assembly destroys precision and how to ensure experimental integrity.

Read more
The Thermodynamics of Patience: Mastering the Five-Port Cell

The Thermodynamics of Patience: Mastering the Five-Port Cell

Precision in electrochemistry requires balancing thermal control with material limits. Learn to manage heat without compromising your PTFE seals or data integrity.

Read more
The Geometry of Control: Inside the Super-Sealed Electrolytic Cell

The Geometry of Control: Inside the Super-Sealed Electrolytic Cell

Why the 10-100ml volume and 5-aperture design became the gold standard for electrochemical precision, and how to choose the right setup.

Read more
The Geometry of Truth: Why the Electrolytic Cell Dictates Experimental Success

The Geometry of Truth: Why the Electrolytic Cell Dictates Experimental Success

Precision in electrochemistry relies on the vessel as much as the reaction. Explore the 50-500ml standard, the three-electrode system, and the art of cell design.

Read more
The Invisible Architecture of Accuracy: Optimizing the Five-Port Electrolytic Cell

The Invisible Architecture of Accuracy: Optimizing the Five-Port Electrolytic Cell

Master the critical pre-use protocols for five-port water bath electrolytic cells. Learn how meticulous preparation ensures reproducible electrochemical data.

Read more
The Invisible Variable: Why Electrolytic Cell Hygiene Defines Your Data

The Invisible Variable: Why Electrolytic Cell Hygiene Defines Your Data

Proper electrolytic cell maintenance prevents dangerous reactions and ensures data integrity. Learn the critical "no metal brush" rule and safety protocols.

Read more
The Geometry of Control: Why 1 cm² Defines Electrochemical Success

The Geometry of Control: Why 1 cm² Defines Electrochemical Success

Discover why the standard 1 cm² reaction area and precision O-ring sealing create the necessary baseline for repeatable, accurate electrochemical data.

Read more
The Architecture of Accuracy: Inside the Five-Port Electrolytic Cell

The Architecture of Accuracy: Inside the Five-Port Electrolytic Cell

Precision in electrochemistry relies on controlling the environment. Explore the engineering behind the five-port water bath cell and how it eliminates variables.

Read more
The Fragile Vessel of Truth: A Maintenance Manifesto for Electrolytic Cells

The Fragile Vessel of Truth: A Maintenance Manifesto for Electrolytic Cells

Data integrity relies on equipment health. Discover the psychological and technical art of maintaining five-port electrolytic cells for reproducible science.

Read more
The Choreography of Electrons: Why Precision Demands a Trinity

The Choreography of Electrons: Why Precision Demands a Trinity

Precision in coating evaluation isn't about power; it's about separation. Discover why the three-electrode system is the only way to silence electrochemical noise.

Read more
The Fragility of Precision: Mastering the Integrity of Five-Port Electrolytic Cells

The Fragility of Precision: Mastering the Integrity of Five-Port Electrolytic Cells

Prevent leaks in electrolytic cells through systematic inspection and proper assembly. A guide to mastering experimental seal integrity and reliability.

Read more
The Silent Variable: Why Material Purity Defines Electrochemical Truth

The Silent Variable: Why Material Purity Defines Electrochemical Truth

Discover why the all-quartz electrolytic cell is the hidden standard for high-precision electrochemistry, photoelectrochemistry, and contamination control.

Read more
The Art of Resistance: Why Your Electrolytic Cell Needs Breathing Room

The Art of Resistance: Why Your Electrolytic Cell Needs Breathing Room

Short circuits in electrolytic cells aren't just accidents; they are geometry failures. Learn how to control the electrical path and protect your lab equipment.

Read more
The Invisible Variable: Why Post-Experiment Rituals Define Scientific Truth

The Invisible Variable: Why Post-Experiment Rituals Define Scientific Truth

Post-experiment cleanup isn't a chore—it's a control variable. Learn the systematic care of all-quartz electrolytic cells to ensure reproducibility.

Read more
The Geometry of Precision: Why Cell Volume Defines Your Data

The Geometry of Precision: Why Cell Volume Defines Your Data

It’s not just about capacity. Discover how electrolytic cell volume—from 8ml to 100ml—dictates the stability, cost, and accuracy of your coating evaluation.

Read more
The Architecture of Silence: Mastering the Super-Sealed Electrolytic Cell

The Architecture of Silence: Mastering the Super-Sealed Electrolytic Cell

Great electrochemical data starts before the experiment begins. Master the four critical steps of cell preparation—inspection, cleaning, installation, and loading.

Read more
The Silent Dialogue: Mastering Control in Electrolytic Cells

The Silent Dialogue: Mastering Control in Electrolytic Cells

Electrolysis is a non-spontaneous act requiring precise control. Learn to interpret the interplay of voltage, current, and physical phenomena for safer lab results.

Read more