Thematics Vacuum Furnace

vacuum furnace

A vacuum furnace is a type of furnace that surrounds the material being processed with a vacuum. This prevents oxidation, heat loss through convection, and contamination. The furnace can heat materials like metals and ceramics to high temperatures up to 3,000 °C with select materials. The vacuum level and maximum furnace temperature depend on the melting points and vapor pressures of the heated materials. Vacuum furnaces are used for processes like annealing, brazing, sintering, and heat treatment. The process can be computer-controlled, ensuring repeatability, and the product is low in contamination and high in purity.


We have the best Vacuum Furnace solutions for your unique requirements. Our custom vacuum furnaces are engineered to meet almost any customer requirement. We offer a range of shapes and sizes, multiple hot zone options, and manual or automatic flow controls. Our extensive portfolio virtually guarantees there is an appropriate standard solution that will meet your needs. We build vacuum furnaces operating at pressures as low as 10-11 Torr (mBar) with an operating range from room temperature to a maximum temperature of 3000 °C (5432°F) for our tungsten hot zones and 2200 °C (3992°F) for our graphite hot zones in a rough vacuum level (10-2 Torr/mbar).

Applications of Vacuum Furnace

  • Annealing
  • Brazing
  • Sintering
  • Heat treatment
  • Hardening
  • Tempering
  • Aging
  • Nitriding
  • Carburizing
  • Quenching

Advantages of Vacuum Furnace

  • Allows heating of metals to high temperatures with minimal contamination problems due to the absence of oxygen.
  • Provides uniform high temperatures and precise temperature control for producing high-quality materials with consistent properties.
  • Low contamination from carbon, oxygen, and other gases due to the vacuum atmosphere.
  • Quick quenching or cooling of the product is possible to shorten process cycle times.
  • Computer-controlled to ensure repeatable performance for consistent quality output.
  • Can heat materials up to temperatures as high as 3,000 °C (5,432 °F) with select materials.
  • Commercially available vacuum pumping systems can reach vacuum levels as low as 1×10−11 torrs (1.3×10−11 mbar; 1.3×10−14 atm).
  • Vacuum pumping systems remove low temperature by-products from the process materials during heating, resulting in a higher purity end product.
  • Used for a wide range of industrial processes, such as heat treatment, sintering, brazing, and annealing.
  • Typically made of refractory materials, such as graphite or ceramic, that can withstand the extreme temperatures and vacuum environment.

 

Our Vacuum Furnace is the perfect solution for your unique projects. Our extensive product line provides a standard solution to fit your needs. However, for more unconventional applications, our custom design service comes in handy. Our custom vacuum furnaces are engineered for your specific project, no matter how unconventional it may be. These furnaces are designed for multiple processes, available in vertical or horizontal loading, and come in a range of shapes and sizes. In addition, we offer automatic flow controls and multiple hot zone options. The best part? Our Vacuum Furnace is very advantageous in terms of price and offers a complete customisation service.

FAQ

What Is A Vacuum Furnace Used For?

A vacuum furnace is used for high-temperature processing of materials in a controlled environment without any contamination. It operates by surrounding the product with a vacuum, which prevents oxidation and heat loss from the product through convection. This furnace is commonly used for heat treatment of steel alloys at temperatures below 1200 °C. High-temperature vacuum furnaces can reach temperatures up to 3000°C and are used for industrial processes such as sintering, brazing, annealing, and heat treatment with high consistency and low contamination. The ability to achieve uniform heating across the entire workpiece is a key benefit of using a high-temperature vacuum furnace.

What Is The Process Of A Vacuum Furnace?

The process of a vacuum furnace involves loading the parts into the chamber and creating a vacuum inside it by utilizing a vacuum pump. The next step is to heat the parts using temperature controls, which can reach between 1,500 and 5,400 degrees Fahrenheit. This process eliminates the possibility of oxidation and contamination, resulting in a higher purity end product. After heating, the parts are cooled and finished before being removed from the vacuum furnace. The furnace consists of various components, including the vacuum system, furnace shell, electric heating element, temperature controls, power supply system, and transport apparatus.

What Gas Is Used In A Vacuum Furnace?

Different gases can be used in a vacuum furnace depending on the application. In general, vacuum furnaces can work with gases or mixtures such as Argon, Nitrogen, Hydrogen, Carbon Monoxide, Helium, among others. The use of these gases allows for heat treatment in a defined, mostly non-oxidizing atmosphere, which is required for various applications such as vacuum soldering and brazing, vacuum annealing, and sintering. Additionally, it is possible to work with a defined oxygen concentration that is different from the air composition.

What Is The Heating Element Used In A Vacuum Furnace?

The heating element in a vacuum furnace is critical to its proper functioning, and is dependent on factors such as maximum operating temperature, power load, partial pressure and quench gases, and life expectancy. Vacuum furnaces are heated by electric resistance elements made from a variety of materials, including high-temperature metallic alloys such as stainless steel, nickel-chromium, molybdenum, tungsten, tantalum, or of non-metallic materials such as graphite and silicon carbide. The choice of material for the heating element is important in maximizing its longevity, reliability, efficiency, and ultimately the process results.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

Carrier Materials and Refractory Properties in Vacuum Furnaces

Carrier Materials and Refractory Properties in Vacuum Furnaces

An in-depth look at the materials and refractory properties essential for the operation of vacuum furnaces, including their applications and recommended materials.

Read more
Vacuum Tube Furnaces: Routine Maintenance and Frequently Asked Questions

Vacuum Tube Furnaces: Routine Maintenance and Frequently Asked Questions

Guidelines and solutions for maintaining vacuum tube furnaces and addressing common issues.

Read more
Vacuum Furnace Types and Applications

Vacuum Furnace Types and Applications

Overview of different vacuum furnace types and their uses in various heat treatment processes.

Read more
Laboratory Vacuum Furnace Operating Procedures

Laboratory Vacuum Furnace Operating Procedures

Detailed steps for operating a vacuum furnace in a laboratory setting.

Read more
Chip Manufacturing: Comprehensive Guide to the Annealing Process

Chip Manufacturing: Comprehensive Guide to the Annealing Process

Detailed exploration of the annealing process in semiconductor fabrication, its types, key parameters, and applications.

Read more
Application of Vacuum Heat Treatment Technology

Application of Vacuum Heat Treatment Technology

Exploring the evolution and benefits of vacuum heat treatment in metal processing.

Read more
Structural Features and Functions of Vacuum Furnaces in Powder Metallurgy

Structural Features and Functions of Vacuum Furnaces in Powder Metallurgy

This article discusses the structural features and functions of vacuum furnaces, focusing on their use in powder metallurgy processes.

Read more
Comparison of Common Semiconductor Annealing Processes

Comparison of Common Semiconductor Annealing Processes

An overview of different semiconductor annealing methods and their characteristics.

Read more
Comprehensive Overview of Commonly Used Heat Treatment Equipment

Comprehensive Overview of Commonly Used Heat Treatment Equipment

This article discusses various heat treatment equipment, their classifications, structures, and applications.

Read more
Vacuum Heat Treatment: Principles and Processes

Vacuum Heat Treatment: Principles and Processes

An overview of vacuum heat treatment methods to improve material properties.

Read more
Guidelines for Purchasing Vacuum Heat Treatment Furnaces

Guidelines for Purchasing Vacuum Heat Treatment Furnaces

A comprehensive guide on selecting and purchasing vacuum heat treatment furnaces for various industrial applications.

Read more
Technical Characteristics and General Knowledge of Vacuum Heat Treatment Furnaces

Technical Characteristics and General Knowledge of Vacuum Heat Treatment Furnaces

An in-depth look at the technical aspects and general knowledge of vacuum heat treatment furnaces, focusing on their unique features and operational requirements.

Read more
High-Temperature Vacuum Furnace: Classification, Applications, and Components

High-Temperature Vacuum Furnace: Classification, Applications, and Components

An overview of high-temperature vacuum furnaces, their types, applications, and key components.

Read more
Applications and Advances in Vacuum Hot Press Sintering Furnaces for Precision Ceramics

Applications and Advances in Vacuum Hot Press Sintering Furnaces for Precision Ceramics

Explores the use of vacuum hot press sintering for advanced ceramics, metal/ceramic welding, and industry trends.

Read more
Functions of a Vacuum Hot Press Sintering Furnace

Functions of a Vacuum Hot Press Sintering Furnace

Exploring the key functions of vacuum hot press sintering furnaces in material processing.

Read more
Advanced Ceramics Hot Press Sintering Technology and Equipment

Advanced Ceramics Hot Press Sintering Technology and Equipment

Explores the hot press sintering process for advanced ceramics, its methods, advantages, equipment, and applications.

Read more
Vacuum Hot Press Sintering Furnace Structure and Classification

Vacuum Hot Press Sintering Furnace Structure and Classification

An in-depth look at the structure, types, and components of vacuum hot press sintering furnaces, focusing on their applications and benefits in material densification.

Read more
Common Sense Points for Vacuum Heat Treatment

Common Sense Points for Vacuum Heat Treatment

Key considerations and practices in vacuum heat treatment processes.

Read more
Principles and Applications of Vacuum Hot Press Sintering Equipment

Principles and Applications of Vacuum Hot Press Sintering Equipment

Exploring the principles, classification, and applications of vacuum hot press sintering equipment in materials science.

Read more
Understanding Hot Presses and Safety Considerations

Understanding Hot Presses and Safety Considerations

An overview of hot presses, their applications, advantages, and safety precautions.

Read more

Downloads

Catalog of Vacuum Induction Melting Furnace

Download

Catalog of Vacuum Induction Furnace

Download

Catalog of Vacuum Arc Melting Furnace

Download

Catalog of Vacuum Furnace

Download

Catalog of Vacuum Hot Press Furnace

Download

Catalog of Rotary Tube Furnace

Download

Catalog of Graphite Vacuum Furnace

Download

Catalog of Dental Furnace

Download