FTIR, or Fourier Transform Infrared Spectroscopy, is a powerful tool that can be used for quantitative analysis.
This method works by comparing the light passing through the system with and without the sample in place.
The key to accurate quantitative analysis using FTIR is ensuring the sample size is appropriate.
If the sample size is too large, it can block the light path, leading to unreliable results.
For instance, when using the KBr pellet method, the sample is typically diluted to about 1% by weight in KBr.
This dilution ensures transparency to infrared light and allows for accurate measurement of light absorption.
5 Key Points to Know About Using FTIR for Quantitative Analysis
1. Choice of Measurement Method
The choice of measurement method in FTIR, such as diffuse reflection, attenuated total reflection (ATR), or the KBr pellet method, depends on the form of the sample.
Each method has its specific application and is chosen based on the sample's characteristics and the type of analysis required.
For example, ATR is suitable for direct measurement of powder samples, while the KBr pellet method is more traditional and commonly used for powder samples as well.
2. Infrared Spectroscopy Principle
Infrared spectroscopy, including FTIR, works by exposing a sample to a beam of infrared light.
The different types of bonds in the molecule absorb specific wavelengths of this light, which are then converted into vibrational energy.
By analyzing which wavelengths are absorbed, chemists can determine the types of bonds present in the molecule.
This principle is fundamental to both qualitative and quantitative analysis in FTIR.
3. Importance of Sample Preparation
Sample preparation is crucial in FTIR for quantitative analysis.
Common methods involve diluting the sample in a matrix like potassium bromide and compressing it into a pellet using a hydraulic press.
This process ensures that the sample is in a form that is suitable for analysis and does not interfere with the light path.
The prepared sample, typically a dilute pellet, is then placed in the spectrometer where the absorption of infrared light is measured to determine the concentration of the analyte.
4. Versatility and Power of FTIR
Overall, FTIR is a versatile and powerful tool for quantitative analysis.
Provided that the sample is prepared correctly and the appropriate measurement method is chosen based on the sample's properties, FTIR can deliver precise and reliable results.
5. Expert Guidance and Cutting-Edge Methods
Discover the full potential of FTIR for your quantitative analysis needs with KINTEK SOLUTION.
Our expertise in sample preparation and cutting-edge measurement methods ensures precise and reliable results.
Let us help you choose the perfect FTIR system and guide you through the process from sample preparation to data interpretation.
Elevate your analytical capabilities today – connect with KINTEK SOLUTION and transform your research.
Continue exploring, consult our experts
Ready to elevate your analytical capabilities?
Contact KINTEK SOLUTION today to learn more about our FTIR systems and expert guidance.
Transform your research with precise and reliable quantitative analysis.