Thematics Vacuum Furnace

vacuum furnace

A vacuum furnace is a type of furnace that surrounds the material being processed with a vacuum. This prevents oxidation, heat loss through convection, and contamination. The furnace can heat materials like metals and ceramics to high temperatures up to 3,000 °C with select materials. The vacuum level and maximum furnace temperature depend on the melting points and vapor pressures of the heated materials. Vacuum furnaces are used for processes like annealing, brazing, sintering, and heat treatment. The process can be computer-controlled, ensuring repeatability, and the product is low in contamination and high in purity.


We have the best Vacuum Furnace solutions for your unique requirements. Our custom vacuum furnaces are engineered to meet almost any customer requirement. We offer a range of shapes and sizes, multiple hot zone options, and manual or automatic flow controls. Our extensive portfolio virtually guarantees there is an appropriate standard solution that will meet your needs. We build vacuum furnaces operating at pressures as low as 10-11 Torr (mBar) with an operating range from room temperature to a maximum temperature of 3000 °C (5432°F) for our tungsten hot zones and 2200 °C (3992°F) for our graphite hot zones in a rough vacuum level (10-2 Torr/mbar).

Applications of Vacuum Furnace

  • Annealing
  • Brazing
  • Sintering
  • Heat treatment
  • Hardening
  • Tempering
  • Aging
  • Nitriding
  • Carburizing
  • Quenching

Advantages of Vacuum Furnace

  • Allows heating of metals to high temperatures with minimal contamination problems due to the absence of oxygen.
  • Provides uniform high temperatures and precise temperature control for producing high-quality materials with consistent properties.
  • Low contamination from carbon, oxygen, and other gases due to the vacuum atmosphere.
  • Quick quenching or cooling of the product is possible to shorten process cycle times.
  • Computer-controlled to ensure repeatable performance for consistent quality output.
  • Can heat materials up to temperatures as high as 3,000 °C (5,432 °F) with select materials.
  • Commercially available vacuum pumping systems can reach vacuum levels as low as 1×10−11 torrs (1.3×10−11 mbar; 1.3×10−14 atm).
  • Vacuum pumping systems remove low temperature by-products from the process materials during heating, resulting in a higher purity end product.
  • Used for a wide range of industrial processes, such as heat treatment, sintering, brazing, and annealing.
  • Typically made of refractory materials, such as graphite or ceramic, that can withstand the extreme temperatures and vacuum environment.

 

Our Vacuum Furnace is the perfect solution for your unique projects. Our extensive product line provides a standard solution to fit your needs. However, for more unconventional applications, our custom design service comes in handy. Our custom vacuum furnaces are engineered for your specific project, no matter how unconventional it may be. These furnaces are designed for multiple processes, available in vertical or horizontal loading, and come in a range of shapes and sizes. In addition, we offer automatic flow controls and multiple hot zone options. The best part? Our Vacuum Furnace is very advantageous in terms of price and offers a complete customisation service.

FAQ

What Is A Vacuum Furnace Used For?

A vacuum furnace is used for high-temperature processing of materials in a controlled environment without any contamination. It operates by surrounding the product with a vacuum, which prevents oxidation and heat loss from the product through convection. This furnace is commonly used for heat treatment of steel alloys at temperatures below 1200 °C. High-temperature vacuum furnaces can reach temperatures up to 3000°C and are used for industrial processes such as sintering, brazing, annealing, and heat treatment with high consistency and low contamination. The ability to achieve uniform heating across the entire workpiece is a key benefit of using a high-temperature vacuum furnace.

What Is The Process Of A Vacuum Furnace?

The process of a vacuum furnace involves loading the parts into the chamber and creating a vacuum inside it by utilizing a vacuum pump. The next step is to heat the parts using temperature controls, which can reach between 1,500 and 5,400 degrees Fahrenheit. This process eliminates the possibility of oxidation and contamination, resulting in a higher purity end product. After heating, the parts are cooled and finished before being removed from the vacuum furnace. The furnace consists of various components, including the vacuum system, furnace shell, electric heating element, temperature controls, power supply system, and transport apparatus.

What Gas Is Used In A Vacuum Furnace?

Different gases can be used in a vacuum furnace depending on the application. In general, vacuum furnaces can work with gases or mixtures such as Argon, Nitrogen, Hydrogen, Carbon Monoxide, Helium, among others. The use of these gases allows for heat treatment in a defined, mostly non-oxidizing atmosphere, which is required for various applications such as vacuum soldering and brazing, vacuum annealing, and sintering. Additionally, it is possible to work with a defined oxygen concentration that is different from the air composition.

What Is The Heating Element Used In A Vacuum Furnace?

The heating element in a vacuum furnace is critical to its proper functioning, and is dependent on factors such as maximum operating temperature, power load, partial pressure and quench gases, and life expectancy. Vacuum furnaces are heated by electric resistance elements made from a variety of materials, including high-temperature metallic alloys such as stainless steel, nickel-chromium, molybdenum, tungsten, tantalum, or of non-metallic materials such as graphite and silicon carbide. The choice of material for the heating element is important in maximizing its longevity, reliability, efficiency, and ultimately the process results.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

Common Laboratory Melting Methods

Common Laboratory Melting Methods

An overview of three primary laboratory melting techniques: Arc Melting, Induction Melting, and Suspension Melting.

Read more
Characteristics and Applications of Different Types of Furnaces in Metal Processing

Characteristics and Applications of Different Types of Furnaces in Metal Processing

This article discusses the features and uses of various furnaces in metal processing, including electric arc, die-casting, aluminum scrap melting, crucible, high-temperature box-type resistance, and die-casting natural gas furnaces.

Read more
Vacuum Induction Melting: Principles, Processes, and Applications

Vacuum Induction Melting: Principles, Processes, and Applications

An in-depth look at the vacuum induction melting process, its characteristics, applications, and equipment structure.

Read more
Classification, Applications, and Components of High-Temperature Vacuum Furnaces

Classification, Applications, and Components of High-Temperature Vacuum Furnaces

An overview of high-temperature vacuum furnaces, their types, applications, and key components.

Read more
Introduction to Vacuum Induction Melting: Principles, Processes, and Applications

Introduction to Vacuum Induction Melting: Principles, Processes, and Applications

An overview of vacuum induction melting, its benefits, applications, and equipment structure.

Read more
Vacuum Induction Melting Furnace: Introduction and Applications

Vacuum Induction Melting Furnace: Introduction and Applications

Overview of vacuum induction melting furnace features, capabilities, and applications in material research and production.

Read more
Vacuum Furnace Technology: Origins, Theory, Construction, and Applications

Vacuum Furnace Technology: Origins, Theory, Construction, and Applications

Explores the history, principles, components, and applications of vacuum furnaces in aerospace and automotive industries.

Read more
Advances in Carburizing Technology: Conventional vs. Low Pressure Vacuum Carburizing

Advances in Carburizing Technology: Conventional vs. Low Pressure Vacuum Carburizing

This article compares conventional carburizing with low-pressure vacuum carburizing, highlighting their differences and advantages.

Read more
Role of Heat Treatment Furnace Atmosphere

Role of Heat Treatment Furnace Atmosphere

Explores the critical role of furnace atmospheres in heat treatment processes, detailing their protective and reactive functions.

Read more
Advantages of Mullite Fiber Lining for High-Temperature Furnaces

Advantages of Mullite Fiber Lining for High-Temperature Furnaces

Explores the benefits of mullite fiber linings in high-temperature industrial furnaces, focusing on thermal stability, energy efficiency, and long-term cost savings.

Read more
Optimizing Air and Atmosphere Furnace Systems: 12 Essential Tips

Optimizing Air and Atmosphere Furnace Systems: 12 Essential Tips

A comprehensive guide on maintaining and optimizing air and atmosphere furnace systems for efficiency and quality.

Read more
13 Tips on Induction Technology and Sustainable Heat Treatment

13 Tips on Induction Technology and Sustainable Heat Treatment

Expert tips on maintaining induction coils, improving vacuum furnace efficiency, and sustainable heat treatment methods.

Read more
Vacuum Heat Treatment: Carbon Reduction and Environmental Impact

Vacuum Heat Treatment: Carbon Reduction and Environmental Impact

Explores the shift towards vacuum heat treatment for carbon reduction, its environmental benefits, and future trends.

Read more
Six Essential Tips for Vacuum Heat Treatment

Six Essential Tips for Vacuum Heat Treatment

Optimize vacuum furnace performance with expert tips on maintenance, inspection, testing, and more.

Read more
Emergency Measures for Vacuum Sintering Furnace

Emergency Measures for Vacuum Sintering Furnace

Guidelines on handling power outages, heating power loss, and gas stoppage in vacuum sintering furnaces.

Read more
Key Considerations for Selecting a Vacuum Furnace

Key Considerations for Selecting a Vacuum Furnace

Guide on choosing vacuum furnaces based on structure, heating, insulation, vacuum system, and more.

Read more
Vacuum Heat Treatment Furnace: Working Principles and Features

Vacuum Heat Treatment Furnace: Working Principles and Features

An in-depth look at the principles and features of vacuum heat treatment furnaces, highlighting their efficiency, environmental benefits, and operational specifics.

Read more
Leakage and Detection Techniques for Vacuum Furnaces

Leakage and Detection Techniques for Vacuum Furnaces

Detailed guide on identifying, detecting, and addressing leaks in vacuum furnaces, including safety precautions and detection methods.

Read more
Common Problems and Considerations in Graphite Rods for Vacuum Sintering Furnaces

Common Problems and Considerations in Graphite Rods for Vacuum Sintering Furnaces

Discusses the selection, performance, installation, and maintenance of graphite rods in vacuum sintering furnaces.

Read more
Selecting Heating Elements for Vacuum Furnaces

Selecting Heating Elements for Vacuum Furnaces

Guide on choosing heating elements and insulation screens for efficient vacuum furnace operation.

Read more

Downloads

Catalog of Vacuum Induction Melting Furnace

Download

Catalog of Vacuum Induction Furnace

Download

Catalog of Vacuum Arc Melting Furnace

Download

Catalog of Vacuum Furnace

Download

Catalog of Vacuum Hot Press Furnace

Download

Catalog of Rotary Tube Furnace

Download

Catalog of Graphite Vacuum Furnace

Download

Catalog of Dental Furnace

Download