Products

Sample Preparation

KinTek sample preparation equipment includes sample crushing,milling, as while as while sieving equipment, hydraulic press equipment includes manual press, electric press, isostatic press, hot press and press filtering machine.

Thermal Equipment

KinTek supplies a broad range of high-temperature furnaces, including lab, pilot production, and industrial production furnaces, with a temperature range of up to 3000 ℃. One of KinTek's advantages is the ability to create custom-made furnaces tailored to specific functions, such as different heating methods and speeds, extra high and dynamic vacuums, controlled atmospheres and gas circuits, automated mechanical structures, and software and hardware development.

Lab Consumables & Materials

KinTek offers a range of lab consumables and materials, including evaporation materials, targets, metals, electrochemistry parts, as well as powders, pellets, wires, strips, foils, plates, and more.

Bio-Chem Equipment

KinTek bio-chem equipment comprises rotary evaporators, glass and stainless steel reactors, distillation systems, circulating heaters and chillers, as well as vacuum equipment.


Products

Laboratory manual slicer

Laboratory manual slicer

Item Number : PT10

Lab Vibration Mill

Lab Vibration Mill

Item Number : KT-VMS


REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

Why Your High-Temperature Furnace Elements Keep Failing (And How to Stop It)

Why Your High-Temperature Furnace Elements Keep Failing (And How to Stop It)

Discover the hidden causes of MoSi2 heating element failure, like pesting and chemical attack, and learn how to achieve reliable, repeatable results.

Read more
Why Your High-Temperature Furnace Elements Fail: The Critical Difference in Silicon Carbide

Why Your High-Temperature Furnace Elements Fail: The Critical Difference in Silicon Carbide

Furnace downtime from failing SiC heating elements costs time and money. Discover the critical material difference that ensures reliability in extreme applications.

Read more
From Crack to Complete: A Scientist's Guide to Eliminating Catastrophic Tube Furnace Failures

From Crack to Complete: A Scientist's Guide to Eliminating Catastrophic Tube Furnace Failures

Prevent costly tube furnace bursts. Learn the key causes like thermal shock and material incompatibility, and discover the right strategy to ensure safety and data integrity.

Read more
Beyond 1000°C: How Precision Furnaces Conquer the Hidden Enemy of Repeatable Results

Beyond 1000°C: How Precision Furnaces Conquer the Hidden Enemy of Repeatable Results

Struggling with inconsistent results from sintering or ashing? Discover how overcoming thermal instability with advanced muffle furnaces is key to reproducible research.

Read more
Your Hydraulic Press Is Hot. Here’s Why It’s a Bigger Problem Than You Think.

Your Hydraulic Press Is Hot. Here’s Why It’s a Bigger Problem Than You Think.

Is your lab's hydraulic press overheating? Learn why this is a critical sign of wasted energy and impending failure, and how to fix it permanently.

Read more
AI completes muffle furnace scientific research graphing in one minute.

AI completes muffle furnace scientific research graphing in one minute.

How to use nano banana to create scientific illustrations

Read more
How to Choose Laboratory Vacuum Pumps for Maximum Efficiency and Cost Savings

How to Choose Laboratory Vacuum Pumps for Maximum Efficiency and Cost Savings

Learn how to choose the right lab vacuum pump for efficiency & cost savings. Compare oil-sealed vs. oil-free pumps & future-proof your investment.

Read more
Water Circulating Vacuum Pumps: A Practical Guide for Laboratory Applications

Water Circulating Vacuum Pumps: A Practical Guide for Laboratory Applications

Discover the benefits of water circulating vacuum pumps for labs: chemical safety, low maintenance, and explosion-proof operation. Ideal for sensitive applications.

Read more
How to Choose Crucible Materials That Prevent Chemical Degradation in Vacuum Induction Melting

How to Choose Crucible Materials That Prevent Chemical Degradation in Vacuum Induction Melting

Learn how to choose crucible materials for vacuum induction melting to prevent chemical degradation and optimize alloy purity. Essential guide for industrial applications.

Read more
How Vacuum Induction Melting Elevates High-Performance Alloy Production

How Vacuum Induction Melting Elevates High-Performance Alloy Production

Discover how Vacuum Induction Melting (VIM) enhances alloy purity, reduces defects, and optimizes costs for aerospace and energy sectors.

Read more
How Vacuum Induction Melting Powers Superior Material Performance in Critical Industries

How Vacuum Induction Melting Powers Superior Material Performance in Critical Industries

Discover how Vacuum Induction Melting (VIM) ensures 99.99% pure alloys for aerospace and medical industries, boosting performance and compliance.

Read more
How Freeze-Drying Cuts Transport Costs by 90% in Critical Logistics

How Freeze-Drying Cuts Transport Costs by 90% in Critical Logistics

Freeze-drying slashes transport costs by 90% in logistics for space, military, and disaster relief by reducing weight and volume. Learn how it works.

Read more
Freeze-Drying Decoded: The Science Behind Preserving Food, Medicine, and Research Materials

Freeze-Drying Decoded: The Science Behind Preserving Food, Medicine, and Research Materials

Discover how freeze-drying preserves food, medicine, and research materials with unmatched efficiency. Learn the science behind lyophilization and its applications.

Read more
Why Freeze-Drying is Indispensable for Preserving Sensitive Samples

Why Freeze-Drying is Indispensable for Preserving Sensitive Samples

Freeze-drying preserves sensitive samples by sublimation, maintaining molecular integrity and enabling stable, room-temperature storage. Essential for proteins, vaccines, and volatile compounds.

Read more
How Freeze-Drying Protects Delicate Biological Structures During Water Removal

How Freeze-Drying Protects Delicate Biological Structures During Water Removal

Freeze-drying preserves biological samples by removing water without structural damage, ideal for vaccines, enzymes, and microbial cultures. Learn how it works.

Read more
How Laboratory Freeze Dryers Outperform Alternatives in Pharma, Food, Biotech & Research

How Laboratory Freeze Dryers Outperform Alternatives in Pharma, Food, Biotech & Research

Discover how lab freeze dryers outperform traditional methods in pharma, food, biotech & research—preserving potency, nutrients & integrity.

Read more
How Cascade Refrigeration Powers Ultra-Low Temperature Freezers Beyond Single-Stage Limits

How Cascade Refrigeration Powers Ultra-Low Temperature Freezers Beyond Single-Stage Limits

Learn how cascade refrigeration enables ultra-low temperature freezers to reach -80°C and beyond, overcoming single-stage system limitations for critical sample storage.

Read more
Why Ultra-Low Temps are Non-Negotiable: The Science Behind Preserving Critical Biological Materials

Why Ultra-Low Temps are Non-Negotiable: The Science Behind Preserving Critical Biological Materials

Discover why ultra-low temperature freezers (-86°C) are vital for preserving cells, proteins, and vaccines. Learn the science behind ULT storage best practices.

Read more
Upright vs. Chest ULT Freezers: How to Choose the Right Configuration for Your Lab

Upright vs. Chest ULT Freezers: How to Choose the Right Configuration for Your Lab

Compare upright vs. chest ULT freezers for your lab: temperature stability, workflow efficiency, and cost analysis to protect sensitive samples.

Read more
How ULT Freezers Prevent Catastrophic Loss of Microbiological Samples

How ULT Freezers Prevent Catastrophic Loss of Microbiological Samples

ULT freezers safeguard microbiological samples with advanced temperature control, contamination prevention, and emergency backup systems to prevent catastrophic loss.

Read more